No Arabic abstract
The order-disorder transition in Ni-Al alloys under irradiation represents an interplay between various re-ordering processes and disordering due to thermal spikes generated by incident high energy particles. Typically, ordering in enabled by diffusion of thermally-generated vacancies, and can only take place at temperatures where they are mobile and in sufficiently high concentration. Here, in-situ transmission electron micrographs reveal that the presence of He, usually considered to be a deleterious immiscible atom in this material, promotes reordering in Ni3Al at temperatures where vacancies are not effective ordering agents. A rate-theory model is presented, that quantitatively explains this behavior, based on parameters extracted from atomistic simulations. These calculations show that the V2He complex is an effective agent through its high stability and mobility. It is surmised that immiscible atoms may stabilize reordering agents in other materials undergoing driven processes, and preserve ordered phases at temperature where the driven processes would otherwise lead to disorder.
The prototypical antiferroelectric PbZrO$_3$ has several unsettled questions, such as the nature of the antiferroelectric transition, possible intermediate phase and the microscopic origin of the Pbam ground state. Using first principles, we show that no phonon becomes truly soft at the cubic-to-Pbam transition temperature, and the order-disorder character of this transition is clearly demonstrated based on molecular dynamics simulations and potential energy surfaces. The out-of-phase octahedral tilting is an important degree of freedom, which can collaborate with other phonon distortions and form a complex energy landscape with multiple minima. Candidates of the possible intermediate phase are suggested based on the calculated kinetic barriers between energy minima, and the development of a first-principles-based effective Hamiltonian. The use of this latter scheme further reveals that specific bi-linear interactions between local dipoles and octahedral tiltings play a major role in the formation of the Pbam ground state, which contrasts with most of the previous explanations.
Given the consensus that pressure improves cation order in most of known materials, a discovery of pressure-induced disorder could require reconsideration of order-disorder transition in solid state physics/chemistry and geophysics. Double perovskites Y2CoIrO6 and Y2CoRuO6 synthesized at ambient pressure show B-site order, while the polymorphs synthesized at 6 and 15 GPa are partially-ordered and disordered respectively. With the decrease of ordering degrees, the lattices are shrunken and the crystal structures alter from monoclinic to orthorhombic symmetry. Correspondingly, long-range ferrimagnetic order in the B-site ordered phases are gradually overwhelmed by B-site disorder. Theoretical calculations suggest that unusual unit cell compressions under external pressures unexpectedly stabilize the disordered phases of Y2CoIrO6 and Y2CoRuO6.
Mastery of order-disorder processes in highly non-equilibrium nanostructured oxides has significant implications for the development of emerging energy technologies. However, we are presently limited in our ability to quantify and harness these processes at high spatial, chemical, and temporal resolution, particularly in extreme environments. Here we describe the percolation of disorder at the model oxide interface LaMnO$_3$ / SrTiO$_3$, which we visualize during in situ ion irradiation in the transmission electron microscope. We observe the formation of a network of disorder during the initial stages of ion irradiation and track the global progression of the system to full disorder. We couple these measurements with detailed structural and chemical probes, examining possible underlying defect mechanisms responsible for this unique percolative behavior.
We present the results of detailed dielectric investigations of the relaxation dynamics in DyMnO$_3$ multiferroic manganite. Strong low-frequency relaxation process near the paraelectric-ferroelectric phase transition is observed. The high frequency mode is directly to the relaxational motion of multiferroic domain walls. We provide an experimental evidence that this relaxation mode corresponds to a chirality switching of the spin cycloid in DyMnO$_3$. We demonstrate that the relaxation dynamics in DyMnO$_3$ is typical for an order-disorder phase transition and may be understood within a simple model with a double well potential. DyMnO$_3$ follows an order-disorder transition scenario implicating that a short range cycloidal order of Mn-spins exists above $T_C$. These results suggest the interpretation of the paraelectric sinusoidal phase in manganites as a dynamical equilibrium of magnetic cycloids with opposite chiralities.
The conductivity and magnetization of Fe1-xCoxS2 were measured to investigate quantum critical behavior in disordered itinerant magnets. Small x (<0.001) is required to convert insulating iron pyrite into a metal, followed by a paramagnetic-to-ferromagnetic metal transition at x = 0.032+/-0.004. Singular contributions are discovered that are distinct from those at either metal-insulator or magnetic transitions. Our data reveal that disorder and low carrier density associated with proximity to a metal-insulator transition fundamentally modifies the critical behavior of the magnetic transition.