Do you want to publish a course? Click here

End-to-End Entity Linking and Disambiguation leveraging Word and Knowledge Graph Embeddings

90   0   0.0 ( 0 )
 Added by Debanjan Chaudhuri
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Entity linking - connecting entity mentions in a natural language utterance to knowledge graph (KG) entities is a crucial step for question answering over KGs. It is often based on measuring the string similarity between the entity label and its mention in the question. The relation referred to in the question can help to disambiguate between entities with the same label. This can be misleading if an incorrect relation has been identified in the relation linking step. However, an incorrect relation may still be semantically similar to the relation in which the correct entity forms a triple within the KG; which could be captured by the similarity of their KG embeddings. Based on this idea, we propose the first end-to-end neural network approach that employs KG as well as word embeddings to perform joint relation and entity classification of simple questions while implicitly performing entity disambiguation with the help of a novel gating mechanism. An empirical evaluation shows that the proposed approach achieves a performance comparable to state-of-the-art entity linking while requiring less post-processing.



rate research

Read More

We present ELQ, a fast end-to-end entity linking model for questions, which uses a biencoder to jointly perform mention detection and linking in one pass. Evaluated on WebQSP and GraphQuestions with extended annotations that cover multiple entities per question, ELQ outperforms the previous state of the art by a large margin of +12.7% and +19.6% F1, respectively. With a very fast inference time (1.57 examples/s on a single CPU), ELQ can be useful for downstream question answering systems. In a proof-of-concept experiment, we demonstrate that using ELQ significantly improves the downstream QA performance of GraphRetriever (arXiv:1911.03868). Code and data available at https://github.com/facebookresearch/BLINK/tree/master/elq
This paper studies the end-to-end construction of an NLP Knowledge Graph (KG) from scientific papers. We focus on extracting four types of relations: evaluatedOn between tasks and datasets, evaluatedBy between tasks and evaluation metrics, as well as coreferent and related relations between the same type of entities. For instance, F1-score is coreferent with F-measure. We introduce novel methods for each of these relation types and apply our final framework (SciNLP-KG) to 30,000 NLP papers from ACL Anthology to build a large-scale KG, which can facilitate automatically constructing scientific leaderboards for the NLP community. The results of our experiments indicate that the resulting KG contains high-quality information.
Disease name recognition and normalization, which is generally called biomedical entity linking, is a fundamental process in biomedical text mining. Recently, neural joint learning of both tasks has been proposed to utilize the mutual benefits. While this approach achieves high performance, disease concepts that do not appear in the training dataset cannot be accurately predicted. This study introduces a novel end-to-end approach that combines span representations with dictionary-matching features to address this problem. Our model handles unseen concepts by referring to a dictionary while maintaining the performance of neural network-based models, in an end-to-end fashion. Experiments using two major datasets demonstrate that our model achieved competitive results with strong baselines, especially for unseen concepts during training.
198 - W.X. Wilcke 2020
End-to-end multimodal learning on knowledge graphs has been left largely unaddressed. Instead, most end-to-end models such as message passing networks learn solely from the relational information encoded in graphs structure: raw values, or literals, are either omitted completely or are stripped from their values and treated as regular nodes. In either case we lose potentially relevant information which could have otherwise been exploited by our learning methods. To avoid this, we must treat literals and non-literals as separate cases. We must also address each modality separately and accordingly: numbers, texts, images, geometries, et cetera. We propose a multimodal message passing network which not only learns end-to-end from the structure of graphs, but also from their possibly divers set of multimodal node features. Our model uses dedicated (neural) encoders to naturally learn embeddings for node features belonging to five different types of modalities, including images and geometries, which are projected into a joint representation space together with their relational information. We demonstrate our model on a node classification task, and evaluate the effect that each modality has on the overall performance. Our result supports our hypothesis that including information from multiple modalities can help our models obtain a better overall performance.
Knowledge graph (KG) entity typing aims at inferring possible missing entity type instances in KG, which is a very significant but still under-explored subtask of knowledge graph completion. In this paper, we propose a novel approach for KG entity typing which is trained by jointly utilizing local typing knowledge from existing entity type assertions and global triple knowledge from KGs. Specifically, we present two distinct knowledge-driven effective mechanisms of entity type inference. Accordingly, we build two novel embedding models to realize the mechanisms. Afterward, a joint model with them is used to infer missing entity type instances, which favors inferences that agree with both entity type instances and triple knowledge in KGs. Experimental results on two real-world datasets (Freebase and YAGO) demonstrate the effectiveness of our proposed mechanisms and models for improving KG entity typing. The source code and data of this paper can be obtained from: https://github.com/ Adam1679/ConnectE
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا