Do you want to publish a course? Click here

Connecting Embeddings for Knowledge Graph Entity Typing

125   0   0.0 ( 0 )
 Added by Anxiang Zhang
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Knowledge graph (KG) entity typing aims at inferring possible missing entity type instances in KG, which is a very significant but still under-explored subtask of knowledge graph completion. In this paper, we propose a novel approach for KG entity typing which is trained by jointly utilizing local typing knowledge from existing entity type assertions and global triple knowledge from KGs. Specifically, we present two distinct knowledge-driven effective mechanisms of entity type inference. Accordingly, we build two novel embedding models to realize the mechanisms. Afterward, a joint model with them is used to infer missing entity type instances, which favors inferences that agree with both entity type instances and triple knowledge in KGs. Experimental results on two real-world datasets (Freebase and YAGO) demonstrate the effectiveness of our proposed mechanisms and models for improving KG entity typing. The source code and data of this paper can be obtained from: https://github.com/ Adam1679/ConnectE



rate research

Read More

Knowledge graph entity typing aims to infer entities missing types in knowledge graphs which is an important but under-explored issue. This paper proposes a novel method for this task by utilizing entities contextual information. Specifically, we design two inference mechanisms: i) N2T: independently use each neighbor of an entity to infer its type; ii) Agg2T: aggregate the neighbors of an entity to infer its type. Those mechanisms will produce multiple inference results, and an exponentially weighted pooling method is used to generate the final inference result. Furthermore, we propose a novel loss function to alleviate the false-negative problem during training. Experiments on two real-world KGs demonstrate the effectiveness of our method. The source code and data of this paper can be obtained from https://github.com/CCIIPLab/CET.
Automated knowledge discovery from trending chemical literature is essential for more efficient biomedical research. How to extract detailed knowledge about chemical reactions from the core chemistry literature is a new emerging challenge that has not been well studied. In this paper, we study the new problem of fine-grained chemical entity typing, which poses interesting new challenges especially because of the complex name mentions frequently occurring in chemistry literature and graphic representation of entities. We introduce a new benchmark data set (CHEMET) to facilitate the study of the new task and propose a novel multi-modal representation learning framework to solve the problem of fine-grained chemical entity typing by leveraging external resources with chemical structures and using cross-modal attention to learn effective representation of text in the chemistry domain. Experiment results show that the proposed framework outperforms multiple state-of-the-art methods.
Entity linking - connecting entity mentions in a natural language utterance to knowledge graph (KG) entities is a crucial step for question answering over KGs. It is often based on measuring the string similarity between the entity label and its mention in the question. The relation referred to in the question can help to disambiguate between entities with the same label. This can be misleading if an incorrect relation has been identified in the relation linking step. However, an incorrect relation may still be semantically similar to the relation in which the correct entity forms a triple within the KG; which could be captured by the similarity of their KG embeddings. Based on this idea, we propose the first end-to-end neural network approach that employs KG as well as word embeddings to perform joint relation and entity classification of simple questions while implicitly performing entity disambiguation with the help of a novel gating mechanism. An empirical evaluation shows that the proposed approach achieves a performance comparable to state-of-the-art entity linking while requiring less post-processing.
154 - Zequn Sun , Muhao Chen , Wei Hu 2020
Capturing associations for knowledge graphs (KGs) through entity alignment, entity type inference and other related tasks benefits NLP applications with comprehensive knowledge representations. Recent related methods built on Euclidean embeddings are challenged by the hierarchical structures and different scales of KGs. They also depend on high embedding dimensions to realize enough expressiveness. Differently, we explore with low-dimensional hyperbolic embeddings for knowledge association. We propose a hyperbolic relational graph neural network for KG embedding and capture knowledge associations with a hyperbolic transformation. Extensive experiments on entity alignment and type inference demonstrate the effectiveness and efficiency of our method.
Neural entity linking models are very powerful, but run the risk of overfitting to the domain they are trained in. For this problem, a domain is characterized not just by genre of text but even by factors as specific as the particular distribution of entities, as neural models tend to overfit by memorizing properties of frequent entities in a dataset. We tackle the problem of building robust entity linking models that generalize effectively and do not rely on labeled entity linking data with a specific entity distribution. Rather than predicting entities directly, our approach models fine-grained entity properties, which can help disambiguate between even closely related entities. We derive a large inventory of types (tens of thousands) from Wikipedia categories, and use hyperlinked mentions in Wikipedia to distantly label data and train an entity typing model. At test time, we classify a mention with this typing model and use soft type predictions to link the mention to the most similar candidate entity. We evaluate our entity linking system on the CoNLL-YAGO dataset (Hoffart et al., 2011) and show that our approach outperforms prior domain-independent entity linking systems. We also test our approach in a harder setting derived from the WikilinksNED dataset (Eshel et al., 2017) where all the mention-entity pairs are unseen during test time. Results indicate that our approach generalizes better than a state-of-the-art neural model on the dataset.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا