Do you want to publish a course? Click here

End-to-End Entity Classification on Multimodal Knowledge Graphs

199   0   0.0 ( 0 )
 Added by Xander Wilcke
 Publication date 2020
and research's language is English
 Authors W.X. Wilcke




Ask ChatGPT about the research

End-to-end multimodal learning on knowledge graphs has been left largely unaddressed. Instead, most end-to-end models such as message passing networks learn solely from the relational information encoded in graphs structure: raw values, or literals, are either omitted completely or are stripped from their values and treated as regular nodes. In either case we lose potentially relevant information which could have otherwise been exploited by our learning methods. To avoid this, we must treat literals and non-literals as separate cases. We must also address each modality separately and accordingly: numbers, texts, images, geometries, et cetera. We propose a multimodal message passing network which not only learns end-to-end from the structure of graphs, but also from their possibly divers set of multimodal node features. Our model uses dedicated (neural) encoders to naturally learn embeddings for node features belonging to five different types of modalities, including images and geometries, which are projected into a joint representation space together with their relational information. We demonstrate our model on a node classification task, and evaluate the effect that each modality has on the overall performance. Our result supports our hypothesis that including information from multiple modalities can help our models obtain a better overall performance.



rate research

Read More

Knowledge graph embedding has been an active research topic for knowledge base completion, with progressive improvement from the initial TransE, TransH, DistMult et al to the current state-of-the-art ConvE. ConvE uses 2D convolution over embeddings and multiple layers of nonlinear features to model knowledge graphs. The model can be efficiently trained and scalable to large knowledge graphs. However, there is no structure enforcement in the embedding space of ConvE. The recent graph convolutional network (GCN) provides another way of learning graph node embedding by successfully utilizing graph connectivity structure. In this work, we propose a novel end-to-end Structure-Aware Convolutional Network (SACN) that takes the benefit of GCN and ConvE together. SACN consists of an encoder of a weighted graph convolutional network (WGCN), and a decoder of a convolutional network called Conv-TransE. WGCN utilizes knowledge graph node structure, node attributes and edge relation types. It has learnable weights that adapt the amount of information from neighbors used in local aggregation, leading to more accurate embeddings of graph nodes. Node attributes in the graph are represented as additional nodes in the WGCN. The decoder Conv-TransE enables the state-of-the-art ConvE to be translational between entities and relations while keeps the same link prediction performance as ConvE. We demonstrate the effectiveness of the proposed SACN on standard FB15k-237 and WN18RR datasets, and it gives about 10% relative improvement over the state-of-the-art ConvE in terms of HITS@1, HITS@3 and HITS@10.
Transcription or sub-titling of open-domain videos is still a challenging domain for Automatic Speech Recognition (ASR) due to the datas challenging acoustics, variable signal processing and the essentially unrestricted domain of the data. In previous work, we have shown that the visual channel -- specifically object and scene features -- can help to adapt the acoustic model (AM) and language model (LM) of a recognizer, and we are now expanding this work to end-to-end approaches. In the case of a Connectionist Temporal Classification (CTC)-based approach, we retain the separation of AM and LM, while for a sequence-to-sequence (S2S) approach, both information sources are adapted together, in a single model. This paper also analyzes the behavior of CTC and S2S models on noisy video data (How-To corpus), and compares it to results on the clean Wall Street Journal (WSJ) corpus, providing insight into the robustness of both approaches.
In this paper, we study the problem of learning probabilistic logical rules for inductive and interpretable link prediction. Despite the importance of inductive link prediction, most previous works focused on transductive link prediction and cannot manage previously unseen entities. Moreover, they are black-box models that are not easily explainable for humans. We propose DRUM, a scalable and differentiable approach for mining first-order logical rules from knowledge graphs which resolves these problems. We motivate our method by making a connection between learning confidence scores for each rule and low-rank tensor approximation. DRUM uses bidirectional RNNs to share useful information across the tasks of learning rules for different relations. We also empirically demonstrate the efficiency of DRUM over existing rule mining methods for inductive link prediction on a variety of benchmark datasets.
84 - Jay Pujara , Lise Getoor 2016
Entity resolution, the problem of identifying the underlying entity of references found in data, has been researched for many decades in many communities. A common theme in this research has been the importance of incorporating relational features into the resolution process. Relational entity resolution is particularly important in knowledge graphs (KGs), which have a regular structure capturing entities and their interrelationships. We identify three major problems in KG entity resolution: (1) intra-KG reference ambiguity; (2) inter-KG reference ambiguity; and (3) ambiguity when extending KGs with new facts. We implement a framework that generalizes across these three settings and exploits this regular structure of KGs. Our framework has many advantages over custom solutions widely deployed in industry, including collective inference, scalability, and interpretability. We apply our framework to two real-world KG entity resolution problems, ambiguity in NELL and merging data from Freebase and MusicBrainz, demonstrating the importance of relational features.
Automatic affect recognition is a challenging task due to the various modalities emotions can be expressed with. Applications can be found in many domains including multimedia retrieval and human computer interaction. In recent years, deep neural networks have been used with great success in determining emotional states. Inspired by this success, we propose an emotion recognition system using auditory and visual modalities. To capture the emotional content for various styles of speaking, robust features need to be extracted. To this purpose, we utilize a Convolutional Neural Network (CNN) to extract features from the speech, while for the visual modality a deep residual network (ResNet) of 50 layers. In addition to the importance of feature extraction, a machine learning algorithm needs also to be insensitive to outliers while being able to model the context. To tackle this problem, Long Short-Term Memory (LSTM) networks are utilized. The system is then trained in an end-to-end fashion where - by also taking advantage of the correlations of the each of the streams - we manage to significantly outperform the traditional approaches based on auditory and visual handcrafted features for the prediction of spontaneous and natural emotions on the RECOLA database of the AVEC 2016 research challenge on emotion recognition.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا