Do you want to publish a course? Click here

CO, Water, and Possible Methanol in Eta Carinae Approaching Periastron

94   0   0.0 ( 0 )
 Added by Patrick Morris
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

In circumstellar gas, the complex organic molecule methanol has been found almost exclusively around young stellar objects, and is thus regarded as a signpost of recent star formation. Here we report the first probable detection of methanol around an evolved high-mass star, in the complex circumstellar environment around the Luminous Blue Variable $eta$ Carinae, while using ALMA to investigate molecular cloud conditions traced by CO (2-1) in an orbit phase of the massive binary preceding the 2020 periastron. Favoring methanol over a $^{13}$CS alternative, the emission originates from hot ($T_{rm{gas}} simeq$ 700 K) material, $sim$2$$ (0.02 pc) across, centered on the dust-obscured binary in contrast to the CO which traces inner layers of the extended massive equatorial torus, and is accompanied by prominent absorption in a cooler ($T_{rm{gas}} simeq$ 110 K) layer of gas. We also report detections of water in $Herschel$/HIFI observations at 557 GHz and 988 GHz. The methanol abundance is several to 50 times higher than observed towards several lower mass stars, while water abundances are similar to those observed in cool, dense molecular clouds. The very high methanol:water abundance ratio in the core of $eta$ Carinae may suggest methanol formation processes similar to Fischer-Tropsch-type catalytic reactions on dust grains. These observations prove that complex molecule formation can occur in the chemically evolved environments around massive stars in the end stages of their evolution, given sufficient gas densities and shielding conditions as may occur in material around massive interacting companions and merger remnants.



rate research

Read More

522 - M. Teodoro 2011
The periodic spectroscopic events in eta Carinae are now well established and occur near the periastron passage of two massive stars in a very eccentric orbit. Several mechanisms have been proposed to explain the variations of different spectral features, such as an eclipse by the wind-wind collision boundary, a shell ejection from the primary star or accretion of its wind onto the secondary. All of them have problems explaining all the observed phenomena. To better understand the nature of the cyclic events, we performed a dense monitoring of eta Carinae with 5 Southern telescopes during the 2009 low excitation event, resulting in a set of data of unprecedented quality and sampling. The intrinsic luminosity of the He II 4686 emission line (L~310 Lsun) just before periastron reveals the presence of a very luminous transient source of extreme UV radiation emitted in the wind-wind collision (WWC) region. Clumps in the primarys wind probably explain the flare-like behavior of both the X-ray and He II 4686 light-curves. After a short-lived minimum, He II 4686 emission rises again to a ne
91 - L. Loinard 2016
Single-dish sub-millimeter observations have recently revealed the existence of a substantial, chemically peculiar, molecular gas component located in the innermost circumstellar environment of the very massive luminous blue variable star $eta$ Carinae. Here, we present 5$$-resolution interferometric observations of the 1$rightarrow$0 rotational transition of hydrogen cyanide (HCN) obtained with the Australia Telescope Compact Array (ATCA) toward this star. The emission is concentrated in the central few arcseconds around $eta$ Carinae and shows a clear 150 km s$^{-1}$ velocity gradient running from west-north-west (blue) to east-south-east (red). Given the extent, location, and kinematics of this molecular material, we associate it with the complex of dusty arcs and knots seen in mid-infrared emission near the center of the Homunculus nebula. Indeed, the shielding provided by this dust could help explain how molecules survive in the presence of the intense UV radiation field produced by $eta$ Carinae. The dust located in the central few arcseconds around $eta$ Carinae and the molecular component described here have most likely formed in situ, out of material expelled by the massive interacting binary system. Thus, $eta$ Carinae offers us a rare glimpse on the processes leading to the formation of dust and molecules around massive stars that are so relevant to the interpretation of dust and molecule detections at high redshifts.
We present images of $eta$ Carinae in the recombination lines H30$alpha$ and He30$alpha$ and the underlying continuum with 50~mas resolution (110 AU), obtained with ALMA. For the first time, the 230 GHz continuum image is resolved into a compact core, coincident with the binary system position, and a weaker extended structure to the NW of the compact source. Iso-velocity images of the H30$alpha$ recombination line show at least 16 unresolved sources with velocities between -30 and -65 km s$^{-1}$ distributed within the continuum source. A NLTE model, with density and temperature of the order $10^7$ cm$^{-3}$ and $10^4$ K, reproduce both the observed H30$alpha$ line profiles and their underlying continuum flux densities. Three of these sources are identified with Weigelt blobs D, C and B; estimating their proper motions, we derive ejection times (in years) of 1952.6, 1957.1, and 1967.6, respectively, all of which are close to periastron passage. Weaker H30$alpha$ line emission is detected at higher positive and negative velocities, extending in the direction of the Homunculus axis. The He30$alpha$ recombination line is also detected with the same velocity of the narrow H30$alpha$ line. Finally, the close resemblance of the H30$alpha$ image with that of an emission line that was reported in the literature as HCO$^+$(4-3) led us to identify this line as H40$delta$ instead, an identification that is further supported by modeling results. Future observations will enable to determine the proper motions of all the compact sources discovered in the new high-angular resolution data of $eta$ Carinae.
116 - Nathan Smith , Jon A. Morse 2019
We present the first images of the nebula around eta Carinae obtained with HST/WFC3, including a UV image in the F280N filter that traces MgII emission, plus contemporaneous imaging in the F336W, F658N, and F126N filters that trace near-UV continuum, [NII], and [FeII], respectively. The F336W and F658N images are consistent with previous images in these filters, and F126N shows that for the most part, [FeII] 12567 traces clumpy shocked gas seen in [NII]. The F280N image, however, reveals MgII emission from structures that have not been seen in any previous line or continuum images of eta Carinae. This image shows diffuse MgII emission immediately outside the bipolar Homunculus nebula in all directions, but with the strongest emission concentrated over the poles. The diffuse structure with prominent radial streaks, plus an anticorrelation with ionized tracers of clumpy shocked gas, leads us to suggest that this is primarily MgII resonant scattering from unshocked, neutral atomic gas. We discuss the implied structure and geometry of the MgII emission, and its relation to the Homunculus lobes and various other complex nebular structures. An order of magnitude estimate of the neutral gas mass traced by MgII is 0.02Msun, with a corresponding kinetic energy around 1e47erg. This may provide important constraints on polar mass loss in the early phases of the Great Eruption. We argue that the MgII line may be an excellent tracer of significant reservoirs of freely expanding, unshocked, and otherwise invisible neutral atomic gas in a variety of stellar outflows.
As a product of the maser monitoring program with the 26m telescope of the Hartebeesthoek Radio Astronomy Observatory (HartRAO), we present an unprecedented, contemporaneous flaring event of 10 maser transitions in hydroxyl, methanol, and water that began in 2015 January in the massive star-forming region NGC6334I in the velocity range -10 to -2 km/s. The 6.7 GHz methanol and 22.2 GHz water masers began flaring within 22 days of each other, while the 12.2 GHz methanol and 1665 MHz hydroxyl masers flared 80 and 113 days later respectively. The 1665 MHz, 6.7 GHz, and 22.2 GHz masers have all remained in their flared state for nearly 3 years. The brightest flaring components increased by factors of 66, 21, 26, and 20 in the 12.2 and 6.7 GHz methanol, 1665 MHz hydroxyl and 22.2 GHz water maser transitions respectively; some weaker components increased by up to a factor of 145. We also report new maser emission in the 1720, 6031, and 6035 MHz OH lines and the 23.1 GHz methanol line, along with the detection of only the fifth 4660 MHz OH maser. We note the correlation of this event with the extraordinary (sub)millimeter continuum outburst from the massive protostellar system NGC6334I-MM1 and discuss the implications of the observed time lags between different maser velocity components on the nature of the outburst. Finally, we identify two earlier epoch maser flaring events likely associated with this object, which suggest a recurring accretive phenomenon that generates powerful radiative outbursts.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا