Do you want to publish a course? Click here

Scoring Functions for Multivariate Distributions and Level Sets

62   0   0.0 ( 0 )
 Added by Xiaochun Meng
 Publication date 2020
  fields Financial
and research's language is English




Ask ChatGPT about the research

Interest in predicting multivariate probability distributions is growing due to the increasing availability of rich datasets and computational developments. Scoring functions enable the comparison of forecast accuracy, and can potentially be used for estimation. A scoring function for multivariate distributions that has gained some popularity is the energy score. This is a generalization of the continuous ranked probability score (CRPS), which is widely used for univariate distributions. A little-known, alternative generalization is the multivariate CRPS (MCRPS). We propose a theoretical framework for scoring functions for multivariate distributions, which encompasses the energy score and MCRPS, as well as the quadratic score, which has also received little attention. We demonstrate how this framework can be used to generate new scores. For univariate distributions, it is well-established that the CRPS can be expressed as the integral over a quantile score. We show that, in a similar way, scoring functions for multivariate distributions can be disintegrated to obtain scoring functions for level sets. Using this, we present scoring functions for different types of level set, including those for densities and cumulative distributions. To compute the scoring functions, we propose a simple numerical algorithm. We illustrate our proposals using simulated and stock returns data.



rate research

Read More

Proper scoring rules are commonly applied to quantify the accuracy of distribution forecasts. Given an observation they assign a scalar score to each distribution forecast, with the the lowest expected score attributed to the true distribution. The energy and variogram scores are two rules that have recently gained some popularity in multivariate settings because their computation does not require a forecast to have parametric density function and so they are broadly applicable. Here we conduct a simulation study to compare the discrimination ability between the energy score and three variogram scores. Compared with other studies, our simulation design is more realistic because it is supported by a historical data set containing commodity prices, currencies and interest rates, and our data generating processes include a diverse selection of models with different marginal distributions, dependence structure, and calibration windows. This facilitates a comprehensive comparison of the performance of proper scoring rules in different settings. To compare the scores we use three metrics: the mean relative score, error rate and a generalised discrimination heuristic. Overall, we find that the variogram score with parameter p=0.5 outperforms the energy score and the other two variogram scores.
63 - Thomas Royen 2016
A (p-1)-variate integral representation is given for the cumulative distribution function of the general p-variate non-central gamma distribution with a non-centrality matrix of any admissible rank. The real part of products of well known analytical functions is integrated over arguments from (-pi,pi). To facilitate the computation, these formulas are given more detailed for p=2 and p=3. These (p-1)-variate integrals are also derived for the diagonal of a non-central complex Wishart Matrix. Furthermore, some alternative formulas are given for the cases with an associated one-factorial (pxp)-correlation matrix R, i.e. R differs from a suitable diagonal matrix only by a matrix of rank 1, which holds in particular for all (3x3)-R with no vanishing correlation.
133 - Thomas Royen 2007
Three types of integral representations for the cumulative distribution functions of convolutions of non-central p-variate gamma distributions are given by integration of elementary complex functions over the p-cube Cp = (-pi,pi]x...x(-pi,pi]. In particular, the joint distribution of the diagonal elements of a generalized quadratic form XAX with n independent normally distributed column vectors in X is obtained. For a single p-variate gamma distribution function (p-1)-variate integrals over Cp-1 are derived. The integrals are numerically more favourable than integrals obtained from the Fourier or laplace inversion formula.
137 - Xinjia Chen 2009
In this paper, we have developed a new class of sampling schemes for estimating parameters of binomial and Poisson distributions. Without any information of the unknown parameters, our sampling schemes rigorously guarantee prescribed levels of precision and confidence.
This paper investigates the rank distribution, cumulative probability, and probability density of price returns for the stocks traded in the KSE and the KOSDAQ market. This research demonstrates that the rank distribution is consistent approximately with the Zipfs law with exponent $alpha = -1.00$ (KSE) and -1.31 (KOSDAQ), similar that of stock prices traded on the TSE. In addition, the cumulative probability distribution follows a power law with scaling exponent $beta = -1.23$ (KSE) and -1.45 (KOSDAQ). In particular, the evidence displays that the probability density of normalized price returns for two kinds of assets almost has the form of an exponential function, similar to the result in the TSE and the NYSE.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا