Do you want to publish a course? Click here

Evaluating the Discrimination Ability of Proper Multivariate Scoring Rules

152   0   0.0 ( 0 )
 Added by Xiaochun Meng
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Proper scoring rules are commonly applied to quantify the accuracy of distribution forecasts. Given an observation they assign a scalar score to each distribution forecast, with the the lowest expected score attributed to the true distribution. The energy and variogram scores are two rules that have recently gained some popularity in multivariate settings because their computation does not require a forecast to have parametric density function and so they are broadly applicable. Here we conduct a simulation study to compare the discrimination ability between the energy score and three variogram scores. Compared with other studies, our simulation design is more realistic because it is supported by a historical data set containing commodity prices, currencies and interest rates, and our data generating processes include a diverse selection of models with different marginal distributions, dependence structure, and calibration windows. This facilitates a comprehensive comparison of the performance of proper scoring rules in different settings. To compare the scores we use three metrics: the mean relative score, error rate and a generalised discrimination heuristic. Overall, we find that the variogram score with parameter p=0.5 outperforms the energy score and the other two variogram scores.



rate research

Read More

We investigate proper scoring rules for continuous distributions on the real line. It is known that the log score is the only such rule that depends on the quoted density only through its value at the outcome that materializes. Here we allow further dependence on a finite number $m$ of derivatives of the density at the outcome, and describe a large class of such $m$-local proper scoring rules: these exist for all even $m$ but no odd $m$. We further show that for $mgeq2$ all such $m$-local rules can be computed without knowledge of the normalizing constant of the distribution.
Interest in predicting multivariate probability distributions is growing due to the increasing availability of rich datasets and computational developments. Scoring functions enable the comparison of forecast accuracy, and can potentially be used for estimation. A scoring function for multivariate distributions that has gained some popularity is the energy score. This is a generalization of the continuous ranked probability score (CRPS), which is widely used for univariate distributions. A little-known, alternative generalization is the multivariate CRPS (MCRPS). We propose a theoretical framework for scoring functions for multivariate distributions, which encompasses the energy score and MCRPS, as well as the quadratic score, which has also received little attention. We demonstrate how this framework can be used to generate new scores. For univariate distributions, it is well-established that the CRPS can be expressed as the integral over a quantile score. We show that, in a similar way, scoring functions for multivariate distributions can be disintegrated to obtain scoring functions for level sets. Using this, we present scoring functions for different types of level set, including those for densities and cumulative distributions. To compute the scoring functions, we propose a simple numerical algorithm. We illustrate our proposals using simulated and stock returns data.
A scoring rule is a loss function measuring the quality of a quoted probability distribution $Q$ for a random variable $X$, in the light of the realized outcome $x$ of $X$; it is proper if the expected score, under any distribution $P$ for $X$, is minimized by quoting $Q=P$. Using the fact that any differentiable proper scoring rule on a finite sample space ${mathcal{X}}$ is the gradient of a concave homogeneous function, we consider when such a rule can be local in the sense of depending only on the probabilities quoted for points in a nominated neighborhood of $x$. Under mild conditions, we characterize such a proper local scoring rule in terms of a collection of homogeneous functions on the cliques of an undirected graph on the space ${mathcal{X}}$. A useful property of such rules is that the quoted distribution $Q$ need only be known up to a scale factor. Examples of the use of such scoring rules include Besags pseudo-likelihood and Hyv{a}rinens method of ratio matching.
Stationary and ergodic time series can be constructed using an s-vine decomposition based on sets of bivariate copula functions. The extension of such processes to infinite copula sequences is considered and shown to yield a rich class of models that generalizes Gaussian ARMA and ARFIMA processes to allow both non-Gaussian marginal behaviour and a non-Gaussian description of the serial partial dependence structure. Extensions of classical causal and invertible representations of linear processes to general s-vine processes are proposed and investigated. A practical and parsimonious method for parameterizing s-vine processes using the Kendall partial autocorrelation function is developed. The potential of the resulting models to give improved statistical fits in many applications is indicated with an example using macroeconomic data.
We propose a novel approach to sentiment data filtering for a portfolio of assets. In our framework, a dynamic factor model drives the evolution of the observed sentiment and allows to identify two distinct components: a long-term component, modeled as a random walk, and a short-term component driven by a stationary VAR(1) process. Our model encompasses alternative approaches available in literature and can be readily estimated by means of Kalman filtering and expectation maximization. This feature makes it convenient when the cross-sectional dimension of the portfolio increases. By applying the model to a portfolio of Dow Jones stocks, we find that the long term component co-integrates with the market principal factor, while the short term one captures transient swings of the market associated with the idiosyncratic components and captures the correlation structure of returns. Using quantile regressions, we assess the significance of the contemporaneous and lagged explanatory power of sentiment on returns finding strong statistical evidence when extreme returns, especially negative ones, are considered. Finally, the lagged relation is exploited in a portfolio allocation exercise.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا