Do you want to publish a course? Click here

Predicting Many Properties of a Quantum System from Very Few Measurements

119   0   0.0 ( 0 )
 Added by Hsin-Yuan Huang
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Predicting properties of complex, large-scale quantum systems is essential for developing quantum technologies. We present an efficient method for constructing an approximate classical description of a quantum state using very few measurements of the state. This description, called a classical shadow, can be used to predict many different properties: order $log M$ measurements suffice to accurately predict $M$ different functions of the state with high success probability. The number of measurements is independent of the system size, and saturates information-theoretic lower bounds. Moreover, target properties to predict can be selected after the measurements are completed. We support our theoretical findings with extensive numerical experiments. We apply classical shadows to predict quantum fidelities, entanglement entropies, two-point correlation functions, expectation values of local observables, and the energy variance of many-body local Hamiltonians. The numerical results highlight the advantages of classical shadows relative to previously known methods.



rate research

Read More

Predicting features of complex, large-scale quantum systems is essential to the characterization and engineering of quantum architectures. We present an efficient approach for constructing an approximate classical description, called the classical shadow, of a quantum system from very few quantum measurements that can later be used to predict a large collection of features. This approach is guaranteed to accurately predict M linear functions with bounded Hilbert-Schmidt norm from only order of log(M) measurements. This is completely independent of the system size and saturates fundamental lower bounds from information theory. We support our theoretical findings with numerical experiments over a wide range of problem sizes (2 to 162 qubits). These highlight advantages compared to existing machine learning approaches.
Characterising quantum processes is a key task in and constitutes a challenge for the development of quantum technologies, especially at the noisy intermediate scale of todays devices. One method for characterising processes is randomised benchmarking, which is robust against state preparation and measurement (SPAM) errors, and can be used to benchmark Clifford gates. A complementing approach asks for full tomographic knowledge. Compressed sensing techniques achieve full tomography of quantum channels essentially at optimal resource efficiency. So far, guarantees for compressed sensing protocols rely on unstructured random measurements and can not be applied to the data acquired from randomised benchmarking experiments. It has been an open question whether or not the favourable features of both worlds can be combined. In this work, we give a positive answer to this question. For the important case of characterising multi-qubit unitary gates, we provide a rigorously guaranteed and practical reconstruction method that works with an essentially optimal number of average gate fidelities measured respect to random Clifford unitaries. Moreover, for general unital quantum channels we provide an explicit expansion into a unitary 2-design, allowing for a practical and guaranteed reconstruction also in that case. As a side result, we obtain a new statistical interpretation of the unitarity -- a figure of merit that characterises the coherence of a process. In our proofs we exploit recent representation theoretic insights on the Clifford group, develop a version of Collins calculus with Weingarten functions for integration over the Clifford group, and combine this with proof techniques from compressed sensing.
Classical machine learning (ML) provides a potentially powerful approach to solving challenging quantum many-body problems in physics and chemistry. However, the advantages of ML over more traditional methods have not been firmly established. In this work, we prove that classical ML algorithms can efficiently predict ground state properties of gapped Hamiltonians in finite spatial dimensions, after learning from data obtained by measuring other Hamiltonians in the same quantum phase of matter. In contrast, under widely accepted complexity theory assumptions, classical algorithms that do not learn from data cannot achieve the same guarantee. We also prove that classical ML algorithms can efficiently classify a wide range of quantum phases of matter. Our arguments are based on the concept of a classical shadow, a succinct classical description of a many-body quantum state that can be constructed in feasible quantum experiments and be used to predict many properties of the state. Extensive numerical experiments corroborate our theoretical results in a variety of scenarios, including Rydberg atom systems, 2D random Heisenberg models, symmetry-protected topological phases, and topologically ordered phases.
Quantum state tomography (QST) is the gold standard technique for obtaining an estimate for the state of small quantum systems in the laboratory. Its application to systems with more than a few constituents (e.g. particles) soon becomes impractical as the effort required grows exponentially in the number of constituents. Developing more efficient techniques is particularly pressing as precisely-controllable quantum systems that are well beyond the reach of QST are emerging in laboratories. Motivated by this, there is a considerable ongoing effort to develop new characterisation tools for quantum many-body systems. Here we demonstrate Matrix Product State (MPS) tomography, which is theoretically proven to allow the states of a broad class of quantum systems to be accurately estimated with an effort that increases efficiently with constituent number. We first prove that this broad class includes the out-of-equilbrium states produced by 1D systems with finite-range interactions, up to any fixed point in time. We then use the technique to reconstruct the dynamical state of a trapped-ion quantum simulator comprising up to 14 entangled spins (qubits): a size far beyond the reach of QST. Our results reveal the dynamical growth of entanglement and description complexity as correlations spread out during a quench: a necessary condition for future beyond-classical performance. MPS tomography should find widespread use to study large quantum many-body systems and to benchmark and verify quantum simulators and computers.
We analyse the nature of the statistics of the work done on or by a quantum many-body system brought out of equilibrium. We show that, for the sudden quench and for an initial state which commutes with the initial Hamiltonian, it is possible to retrieve the whole non-equilibrium thermodynamics via single projective measurements of observables. We highlight in a physically clear way the qualitative implications for the statistics of work coming from considering processes described by operators that either commute or do not commute with the unperturbed Hamiltonian of a given system. We consider a quantum many-body system and derive an expression that allows us to give a physical interpretation, for a thermal initial state, to all of the cumulants of the work in the case of quenched operators commuting with the unperturbed Hamiltonian. In the commuting case the observables that we need to measure have an intuitive physical meaning. Conversely, in the non-commuting case we show that, although it is possible to operate fully within the single-measurement framework irrespectively of the size of the quench, some difficulties are faced in providing a clear-cut physical interpretation to the cumulants. This circumstance makes the study of the physics of the system non-trivial and highlights the non-intuitive phenomenology of the emergence of thermodynamics from the fully quantum microscopic description. We illustrate our ideas with the example of the Ising model in a transverse field showing the interesting behaviour of the high-order statistical moments of the work distribution for a generic thermal state and linking them to the critical nature of the model itself.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا