Do you want to publish a course? Click here

Provably efficient machine learning for quantum many-body problems

140   0   0.0 ( 0 )
 Added by Hsin-Yuan Huang
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Classical machine learning (ML) provides a potentially powerful approach to solving challenging quantum many-body problems in physics and chemistry. However, the advantages of ML over more traditional methods have not been firmly established. In this work, we prove that classical ML algorithms can efficiently predict ground state properties of gapped Hamiltonians in finite spatial dimensions, after learning from data obtained by measuring other Hamiltonians in the same quantum phase of matter. In contrast, under widely accepted complexity theory assumptions, classical algorithms that do not learn from data cannot achieve the same guarantee. We also prove that classical ML algorithms can efficiently classify a wide range of quantum phases of matter. Our arguments are based on the concept of a classical shadow, a succinct classical description of a many-body quantum state that can be constructed in feasible quantum experiments and be used to predict many properties of the state. Extensive numerical experiments corroborate our theoretical results in a variety of scenarios, including Rydberg atom systems, 2D random Heisenberg models, symmetry-protected topological phases, and topologically ordered phases.



rate research

Read More

We study the problem of learning the Hamiltonian of a quantum many-body system given samples from its Gibbs (thermal) state. The classical analog of this problem, known as learning graphical models or Boltzmann machines, is a well-studied question in machine learning and statistics. In this work, we give the first sample-efficient algorithm for the quantum Hamiltonian learning problem. In particular, we prove that polynomially many samples in the number of particles (qudits) are necessary and sufficient for learning the parameters of a spatially local Hamiltonian in l_2-norm. Our main contribution is in establishing the strong convexity of the log-partition function of quantum many-body systems, which along with the maximum entropy estimation yields our sample-efficient algorithm. Classically, the strong convexity for partition functions follows from the Markov property of Gibbs distributions. This is, however, known to be violated in its exact form in the quantum case. We introduce several new ideas to obtain an unconditional result that avoids relying on the Markov property of quantum systems, at the cost of a slightly weaker bound. In particular, we prove a lower bound on the variance of quasi-local operators with respect to the Gibbs state, which might be of independent interest. Our work paves the way toward a more rigorous application of machine learning techniques to quantum many-body problems.
We introduce a novel tensor network structure augmenting the well-established Tree Tensor Network representation of a quantum many-body wave function. The new structure satisfies the area law in high dimensions remaining efficiently manipulatable and scalable. We benchmark this novel approach against paradigmatic two-dimensional spin models demonstrating unprecedented precision and system sizes. Finally, we compute the ground state phase diagram of two-dimensional lattice Rydberg atoms in optical tweezers observing non-trivial phases and quantum phase transitions, providing realistic benchmarks for current and future two-dimensional quantum simulations.
We discuss classical algorithms for approximating the largest eigenvalue of quantum spin and fermionic Hamiltonians based on semidefinite programming relaxation methods. First, we consider traceless $2$-local Hamiltonians $H$ describing a system of $n$ qubits. We give an efficient algorithm that outputs a separable state whose energy is at least $lambda_{max}/O(log n)$, where $lambda_{max}$ is the maximum eigenvalue of $H$. We also give a simplified proof of a theorem due to Lieb that establishes the existence of a separable state with energy at least $lambda_{max}/9$. Secondly, we consider a system of $n$ fermionic modes and traceless Hamiltonians composed of quadratic and quartic fermionic operators. We give an efficient algorithm that outputs a fermionic Gaussian state whose energy is at least $lambda_{max}/O(nlog n)$. Finally, we show that Gaussian states can vastly outperform Slater determinant states commonly used in the Hartree-Fock method. We give a simple family of Hamiltonians for which Gaussian states and Slater determinants approximate $lambda_{max}$ within a fraction $1-O(n^{-1})$ and $O(n^{-1})$ respectively.
Computationally intractable tasks are often encountered in physics and optimization. Such tasks often comprise a cost function to be optimized over a so-called feasible set, which is specified by a set of constraints. This may yield, in general, to difficult and non-convex optimization tasks. A number of standard methods are used to tackle such problems: variational approaches focus on parameterizing a subclass of solutions within the feasible set; in contrast, relaxation techniques have been proposed to approximate it from outside, thus complementing the variational approach by providing ultimate bounds to the global optimal solution. In this work, we propose a novel approach combining the power of relaxation techniques with deep reinforcement learning in order to find the best possible bounds within a limited computational budget. We illustrate the viability of the method in the context of finding the ground state energy of many-body quantum systems, a paradigmatic problem in quantum physics. We benchmark our approach against other classical optimization algorithms such as breadth-first search or Monte-Carlo, and we characterize the effect of transfer learning. We find the latter may be indicative of phase transitions, with a completely autonomous approach. Finally, we provide tools to generalize the approach to other common applications in the field of quantum information processing.
We study the performance of classical and quantum machine learning (ML) models in predicting outcomes of physical experiments. The experiments depend on an input parameter $x$ and involve execution of a (possibly unknown) quantum process $mathcal{E}$. Our figure of merit is the number of runs of $mathcal{E}$ required to achieve a desired prediction performance. We consider classical ML models that perform a measurement and record the classical outcome after each run of $mathcal{E}$, and quantum ML models that can access $mathcal{E}$ coherently to acquire quantum data; the classical or quantum data is then used to predict outcomes of future experiments. We prove that for any input distribution $mathcal{D}(x)$, a classical ML model can provide accurate predictions on average by accessing $mathcal{E}$ a number of times comparable to the optimal quantum ML model. In contrast, for achieving accurate prediction on all inputs, we prove that exponential quantum advantage is possible. For example, to predict expectations of all Pauli observables in an $n$-qubit system $rho$, classical ML models require $2^{Omega(n)}$ copies of $rho$, but we present a quantum ML model using only $mathcal{O}(n)$ copies. Our results clarify where quantum advantage is possible and highlight the potential for classical ML models to address challenging quantum problems in physics and chemistry.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا