Do you want to publish a course? Click here

On the Absence of Triplet Exciton Loss Pathways in Non-Fullerene Acceptor based Organic Solar Cells

122   0   0.0 ( 0 )
 Added by Andreas Sperlich
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate the viability of highly efficient organic solar cells (OSCs) based on non-fullerene acceptors (NFA) by taking into consideration efficiency loss channels and stability issues caused by triplet excitons (TE) formation. OSCs based on a blend of the conjugated donor polymer PBDB-T and ITIC as acceptor were fabricated and investigated with electrical, optical and spin-sensitive methods. The spin-Hamiltonian parameters of molecular TEs and charge transfer TEs in ITIC e.g., zero-field splitting and charge distribution, were calculated by Density Functional Theory (DFT) modelling. In addition, the energetic model describing the photophysical processes in the donor-acceptor blend was derived. Spin-sensitive photoluminescence measurements prove the formation of charge transfer (CT) states in the blend and the formation of TEs in the pure materials and the blend. However, no molecular TE signal is observed in the completed devices under working conditions by spin-sensitive electrical measurements. The absence of a molecular triplet state population allows to eliminate a charge carrier loss channel and irreversible photooxidation facilitated by long-lived triplet states. These results correlate well with the high power conversion efficiency of the PBDB-T:ITIC-based OSCs and their high stability.

rate research

Read More

The power conversion efficiencies (PCEs) of organic solar cells (OSCs) using non-fullerene acceptors (NFAs) have now reached 18%. However, this is still lower than inorganic solar cells, for which PCEs >20% are commonplace. A key reason is that OSCs still show low open-circuit voltages (Voc) relative to their optical band gaps, attributed to non-radiative recombination. For OSCs to compete with inorganics in efficiency, all non-radiative loss pathways must be identified and where possible, removed. Here, we show that in most NFA OSCs, the majority of charge recombination at open-circuit proceeds via formation of non-emissive NFA triplet excitons (T1); in the benchmark PM6:Y6 blend, this fraction reaches 90%, contributing 60 mV to the reduction of Voc. We develop a new design to prevent recombination via this non-radiative channel through the engineering of significant hybridisation between the NFA T1 and the spin-triplet charge transfer exciton (3CTE). We model that the rate of the back charge transfer from 3CTE to T1 can be reduced by an order of magnitude, allowing re-dissociation of the 3CTE. We then demonstrate NFA systems where T1 formation is suppressed. This work therefore provides a clear design pathway for improved OSC performance to 20% PCE and beyond.
Non-fullerene acceptors based on perylenediimides (PDIs) have garnered significant interest as an alternative to fullerene acceptors in organic photovoltaics (OPVs), but their charge transport phenomena are not well understood, especially in bulk heterojunctions (BHJs). Here, we investigate charge transport and current fluctuations by performing correlated low-frequency noise and impedance spectroscopy measurements on two BHJ OPV systems, one employing a fullerene acceptor and the other employing a dimeric PDI acceptor. In the dark, these measurements reveal that PDI-based OPVs have a greater degree of recombination in comparison to fullerene-based OPVs. Furthermore, for the first time in organic solar cells, 1/f noise data are fit to the Kleinpenning model to reveal underlying current fluctuations in different transport regimes. Under illumination, 1/f noise increases by approximately four orders of magnitude for the fullerene-based OPVs and three orders of magnitude for the PDI-based OPVs. An inverse correlation is also observed between noise spectral density and power conversion efficiency. Overall, these results show that low-frequency noise spectroscopy is an effective in-situ diagnostic tool to assess charge transport in emerging photovoltaic materials, thereby providing quantitative guidance for the design of next-generation solar cell materials and technologies.
72 - Dongjun Xie , Tao Liu , Wei Gao 2017
In this article, we designed and synthesized a novel small molecule acceptor of ITCPTC with thiophene-fused ending group by employing a new active methylene precursor of CPTCN. The ITCPTC based polymer solar cells with PBT1-EH as donor achieved very high PCEs of up to 11.8% with a remarkably enhanced fill factor (FF) of 0.751, a near 20% boost in PCE with respect to the ITIC based control device. These values are among the highest PCEs and FFs for PSCs. In the whole study, we made contrasts with ITIC to understand the reasons of excellent performance of ITCPTC-based PSCs through various measurements, such as GIWAXS and RSoXS. We revealed that the simple modification of ITIC into ITCPTC not only change the material electronic structure, but also mediate the material interactions and crystallization, which contribute together to the excellent performance of ITCPTC based PSCs.
Here, a novel deep blue emitter SBABz4 for use in organic light-emitting diodes (OLED) is investigated. The molecular design of the emitter enables thermally activated delayed fluorescence (TADF), which we examine by temperature-dependent time-resolved electroluminescence (trEL) and photoluminescence (trPL). We show that the dihedral angle between donor and acceptor strongly affects the oscillator strength of the charge transfer state alongside the singlet-triplet gap. The angular dependence of the singlet-triplet gap is calculated by time-dependent density functional theory (TD-DFT). A gap of 15 meV is calculated for the relaxed ground state configuration of SBABz4 with a dihedral angle between the donor and acceptor moieties of 86{deg}. Surprisingly, an experimentally obtained energy gap of 72+/-5 meV can only be explained by torsion angles in the range of 70{deg}-75{deg}. Molecular dynamics (MD) simulations showed that SBABz4 evaporated at high temperature acquires a distribution of torsion angles, which immediately leads to the experimentally obtained energy gap. Moreover, the emitter orientation anisotropy in a host matrix shows an 80% ratio of horizontally oriented dipoles, which is highly desirable for efficient light outcoupling. Understanding intramolecular donor-acceptor geometry in evaporated films is crucial for OLED applications, because it affects oscillator strength and TADF efficiency.
A quite general device analysis method that allows the direct evaluation of optical and recombination losses in crystalline silicon (c-Si)-based solar cells has been developed. By applying this technique, the optical and physical limiting factors of the state-of-the-art solar cells with ~20% efficiencies have been revealed. In the established method, the carrier loss mechanisms are characterized from the external quantum efficiency (EQE) analysis with very low computational cost. In particular, the EQE analyses of textured c-Si solar cells are implemented by employing the experimental reflectance spectra obtained directly from the actual devices while using flat optical models without any fitting parameters. We find that the developed method provides almost perfect fitting to EQE spectra reported for various textured c-Si solar cells, including c-Si heterojunction solar cells, a dopant-free c-Si solar cell with a MoOx layer, and an n-type passivated emitter with rear locally diffused (PERL) solar cell. The modeling of the recombination loss further allows the extraction of the minority carrier diffusion length and surface recombination velocity from the EQE analysis. Based on the EQE analysis results, the carrier loss mechanisms in different types of c-Si solar cells are discussed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا