No Arabic abstract
Here, a novel deep blue emitter SBABz4 for use in organic light-emitting diodes (OLED) is investigated. The molecular design of the emitter enables thermally activated delayed fluorescence (TADF), which we examine by temperature-dependent time-resolved electroluminescence (trEL) and photoluminescence (trPL). We show that the dihedral angle between donor and acceptor strongly affects the oscillator strength of the charge transfer state alongside the singlet-triplet gap. The angular dependence of the singlet-triplet gap is calculated by time-dependent density functional theory (TD-DFT). A gap of 15 meV is calculated for the relaxed ground state configuration of SBABz4 with a dihedral angle between the donor and acceptor moieties of 86{deg}. Surprisingly, an experimentally obtained energy gap of 72+/-5 meV can only be explained by torsion angles in the range of 70{deg}-75{deg}. Molecular dynamics (MD) simulations showed that SBABz4 evaporated at high temperature acquires a distribution of torsion angles, which immediately leads to the experimentally obtained energy gap. Moreover, the emitter orientation anisotropy in a host matrix shows an 80% ratio of horizontally oriented dipoles, which is highly desirable for efficient light outcoupling. Understanding intramolecular donor-acceptor geometry in evaporated films is crucial for OLED applications, because it affects oscillator strength and TADF efficiency.
Singlet exciton fission (SF), the conversion of one spin-singlet exciton (S1) into two spin-triplet excitons (T1), could provide a means to overcome the Shockley-Queisser limit in photovoltaics. SF as measured by the decay of S1 has been shown to occur efficiently and independently of temperature even when the energy of S1 is as much as 200 meV less than 2T1. Here, we study films of TIPS-tetracene using transient optical spectroscopy and show that the initial rise of the triplet pair state (TT) occurs in 300 fs, matched by rapid loss of S1 stimulated emission, and that this process is mediated by the strong coupling of electronic and vibrational degrees of freedom. This is followed by a slower 10 ps morphology-dependent phase of S1 decay and TT growth. We observe the TT to be thermally dissociated on 10-100 ns timescales to form free triplets. This provides a model for temperature independent, efficient TT formation and thermally activated TT separation.
Thermally-activated delayed fluorescence (TADF) enables organic semiconductors with charge transfer (CT)-type excitons to convert dark triplet states into bright singlets via a reverse intersystem crossing (rISC) process. Here, we consider the role of the dielectric environment in a range of TADF materials with varying changes in dipole moment upon optical excitation. In a dipolar reference emitter, TXO-TPA, environmental reorganisation after excitation in both solution and doped films triggers the formation of the full CT product state. This lowers the singlet excitation energy by 0.3 eV and minimises the singlet-triplet energy gap ({Delta}EST). Using impulsive Raman measurements, we observe the emergence of two (reactant-inactive) modes at 412 and 813 cm-1 as a vibrational fingerprint of the CT product. In contrast, the dielectric environment plays a smaller role in the electronic excitations of a less dipolar material, 4CzIPN. Quantum-chemical calculations corroborate the appearance of these new product modes in TXO-TPA and show that the dynamic environment fluctuations are large compared to {Delta}EST. The analysis of the energy-time trajectories and the corresponding free energy functions reveals that the dielectric environment significantly reduces the activation energy for rISC, thus increasing the rISC rate by up to three orders of magnitude when compared to a vacuum environment.
We investigate the viability of highly efficient organic solar cells (OSCs) based on non-fullerene acceptors (NFA) by taking into consideration efficiency loss channels and stability issues caused by triplet excitons (TE) formation. OSCs based on a blend of the conjugated donor polymer PBDB-T and ITIC as acceptor were fabricated and investigated with electrical, optical and spin-sensitive methods. The spin-Hamiltonian parameters of molecular TEs and charge transfer TEs in ITIC e.g., zero-field splitting and charge distribution, were calculated by Density Functional Theory (DFT) modelling. In addition, the energetic model describing the photophysical processes in the donor-acceptor blend was derived. Spin-sensitive photoluminescence measurements prove the formation of charge transfer (CT) states in the blend and the formation of TEs in the pure materials and the blend. However, no molecular TE signal is observed in the completed devices under working conditions by spin-sensitive electrical measurements. The absence of a molecular triplet state population allows to eliminate a charge carrier loss channel and irreversible photooxidation facilitated by long-lived triplet states. These results correlate well with the high power conversion efficiency of the PBDB-T:ITIC-based OSCs and their high stability.
Control of chain length and morphology in combination with single-molecule spectroscopy techniques provide a comprehensive photophysical picture of excited-state losses in the prototypical conjugated polymer poly(3-hexylthiophene) (P3HT). A universal self-quenching mechanism is revealed, based on singlet-triplet exciton annihilation, which accounts for the dramatic loss in fluorescence quantum yield of a single P3HT chain between its solution (unfolded) and bulk-like (folded) state. Triplet excitons fundamentally limit the fluorescence of organic photovoltaic materials, which impacts on the conversion of singlet excitons to separated charge carriers, decreasing the efficiency of energy harvesting at high excitation densities. Interexcitonic interactions are so effective that a single P3HT chain of >100 kDa weight behaves like a two-level system, exhibiting perfect photon-antibunching.
Carbene-metal-amides (CMAs) are a promising family of donor-bridge-acceptor molecular charge-transfer emitters for organic light-emitting diodes (OLEDs). Here a universal approach is introduced to tune the energy of their charge-transfer emission. A shift of up to 210 meV is achievable in the solid state via dilution in a polar host matrix. The origin of this shift has two components: constraint of thermally activated triplet diffusion, and electrostatic interactions between the guest molecules and the polar host. This allows the emission of mid-green CMA archetypes to be blue shifted without chemical modifications. Monte-Carlo simulations based on a Marcus-type transfer integral successfully reproduce the concentration- and temperature-dependent triplet diffusion process, and reveal a substantial shift in the ensemble density of states in polar hosts. In gold-bridged CMAs this substantial shift does not lead to a significant change in luminescence lifetime, thermal activation energy, reorganisation energy or intersystem crossing rate. These discoveries thus offer new experimental and theoretical insight in to the coupling between the singlet and triplet manifolds in these materials. Similar emission tuning can be achieved in related materials where chemical modification is used to modify the charge-transfer energy.