No Arabic abstract
The power conversion efficiencies (PCEs) of organic solar cells (OSCs) using non-fullerene acceptors (NFAs) have now reached 18%. However, this is still lower than inorganic solar cells, for which PCEs >20% are commonplace. A key reason is that OSCs still show low open-circuit voltages (Voc) relative to their optical band gaps, attributed to non-radiative recombination. For OSCs to compete with inorganics in efficiency, all non-radiative loss pathways must be identified and where possible, removed. Here, we show that in most NFA OSCs, the majority of charge recombination at open-circuit proceeds via formation of non-emissive NFA triplet excitons (T1); in the benchmark PM6:Y6 blend, this fraction reaches 90%, contributing 60 mV to the reduction of Voc. We develop a new design to prevent recombination via this non-radiative channel through the engineering of significant hybridisation between the NFA T1 and the spin-triplet charge transfer exciton (3CTE). We model that the rate of the back charge transfer from 3CTE to T1 can be reduced by an order of magnitude, allowing re-dissociation of the 3CTE. We then demonstrate NFA systems where T1 formation is suppressed. This work therefore provides a clear design pathway for improved OSC performance to 20% PCE and beyond.
Non-fullerene acceptors based on perylenediimides (PDIs) have garnered significant interest as an alternative to fullerene acceptors in organic photovoltaics (OPVs), but their charge transport phenomena are not well understood, especially in bulk heterojunctions (BHJs). Here, we investigate charge transport and current fluctuations by performing correlated low-frequency noise and impedance spectroscopy measurements on two BHJ OPV systems, one employing a fullerene acceptor and the other employing a dimeric PDI acceptor. In the dark, these measurements reveal that PDI-based OPVs have a greater degree of recombination in comparison to fullerene-based OPVs. Furthermore, for the first time in organic solar cells, 1/f noise data are fit to the Kleinpenning model to reveal underlying current fluctuations in different transport regimes. Under illumination, 1/f noise increases by approximately four orders of magnitude for the fullerene-based OPVs and three orders of magnitude for the PDI-based OPVs. An inverse correlation is also observed between noise spectral density and power conversion efficiency. Overall, these results show that low-frequency noise spectroscopy is an effective in-situ diagnostic tool to assess charge transport in emerging photovoltaic materials, thereby providing quantitative guidance for the design of next-generation solar cell materials and technologies.
We investigate the viability of highly efficient organic solar cells (OSCs) based on non-fullerene acceptors (NFA) by taking into consideration efficiency loss channels and stability issues caused by triplet excitons (TE) formation. OSCs based on a blend of the conjugated donor polymer PBDB-T and ITIC as acceptor were fabricated and investigated with electrical, optical and spin-sensitive methods. The spin-Hamiltonian parameters of molecular TEs and charge transfer TEs in ITIC e.g., zero-field splitting and charge distribution, were calculated by Density Functional Theory (DFT) modelling. In addition, the energetic model describing the photophysical processes in the donor-acceptor blend was derived. Spin-sensitive photoluminescence measurements prove the formation of charge transfer (CT) states in the blend and the formation of TEs in the pure materials and the blend. However, no molecular TE signal is observed in the completed devices under working conditions by spin-sensitive electrical measurements. The absence of a molecular triplet state population allows to eliminate a charge carrier loss channel and irreversible photooxidation facilitated by long-lived triplet states. These results correlate well with the high power conversion efficiency of the PBDB-T:ITIC-based OSCs and their high stability.
We investigate nongeminate recombination in organic solar cells based on copper phthalocyanine (CuPc) and C$_{60}$. Two device architectures, the planar heterojunction (PHJ) and the bulk heterojunction (BHJ), are directly compared in view of differences in charge carrier decay dynamics. We apply a combination of transient photovoltage (TPV) experiments, yielding the small perturbation charge carrier lifetime, and charge extraction measurements, providing the charge carrier density. In organic solar cells, charge photogeneration and recombination primarily occur at the donor--acceptor heterointerface. Whereas the BHJ can often be approximated by an effective medium due to rather small scale phase separation, the PHJ has a well defined two-dimensional heterointerface. To study recombination dynamics in PHJ devices most relevant is the charge accumulation at this interface. As from extraction techniques only the spatially averaged carrier concentration can be determined, we derive the charge carrier density at the interface $n_{int}$ from the open circuit voltage. Comparing the experimental results with macroscopic device simulation we discuss the differences of recombination and charge carrier densities in CuPc:C$_{60}$ PHJ and BHJ devices with respect to the device performance. The open circuit voltage of BHJ is larger than for PHJ at low light intensities, but at 0.3 sun the situation is reversed: here, the PHJ can finally take advantage of its generally longer charge carrier lifetimes, as the active recombination region is smaller.
Carbene-metal-amides (CMAs) are a promising family of donor-bridge-acceptor molecular charge-transfer emitters for organic light-emitting diodes (OLEDs). Here a universal approach is introduced to tune the energy of their charge-transfer emission. A shift of up to 210 meV is achievable in the solid state via dilution in a polar host matrix. The origin of this shift has two components: constraint of thermally activated triplet diffusion, and electrostatic interactions between the guest molecules and the polar host. This allows the emission of mid-green CMA archetypes to be blue shifted without chemical modifications. Monte-Carlo simulations based on a Marcus-type transfer integral successfully reproduce the concentration- and temperature-dependent triplet diffusion process, and reveal a substantial shift in the ensemble density of states in polar hosts. In gold-bridged CMAs this substantial shift does not lead to a significant change in luminescence lifetime, thermal activation energy, reorganisation energy or intersystem crossing rate. These discoveries thus offer new experimental and theoretical insight in to the coupling between the singlet and triplet manifolds in these materials. Similar emission tuning can be achieved in related materials where chemical modification is used to modify the charge-transfer energy.
Ternary organic solar cells (TOSC) are currently under intensive investigation, recently reaching a record efficiency of 17.1%. The origin of the device open-circuit voltage (VOC), already a multifaceted issue in binary OSC, is even more complex in TOSCs. Herein, we investigate two ternary systems with one donor (D) and two acceptor materials (A1, A2) including fullerene and non-fullerene acceptors. By varying the ratio between the two acceptors, we find the VOC to be gradually tuned between those of the two binary systems, D:A1 and D:A2. To investigate the origin of this change, we employ ultra-violet photoemission spectroscopy (UPS) depth profiling, which is used to estimate the photovoltaic gap in the ternary systems. Our results reveal an excellent agreement between the estimated photovoltaic gap and the VOC for all mixing ratios, suggesting that the energetic alignment between the blend components varies depending on the ratio D:A1:A2. Furthermore, our results indicate that the sum of radiative and non-radiative losses in these ternary systems is independent of the blend composition. Finally, we demonstrate the superiority of UPS over X-ray photoemission spectroscopy (XPS) depth profiling in resolving compositional profiles for material combinations with very similar chemical, but dissimilar electronic structures, as common in TOSCs.