Do you want to publish a course? Click here

Distributed Optimal Generation and Load-Side Control for Frequency Regulation in Power Systems

353   0   0.0 ( 0 )
 Added by Luwei Yang
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

In order to deal with issues caused by the increasing penetration of renewable resources in power systems, this paper proposes a novel distributed frequency control algorithm for each generating unit and controllable load in a transmission network to replace the conventional automatic generation control (AGC). The targets of the proposed control algorithm are twofold. First, it is to restore the nominal frequency and scheduled net inter-area power exchanges after an active power mismatch between generation and demand. Second, it is to optimally coordinate the active powers of all controllable units in a distributed manner. The designed controller only relies on local information, computation, and peer-to-peer communication between cyber-connected buses, and it is also robust against uncertain system parameters. Asymptotic stability of the closed-loop system under the designed algorithm is analysed by using a nonlinear structure-preserving model including the first-order turbine-governor dynamics. Finally, case studies validate the effectiveness of the proposed method.

rate research

Read More

The need for Enhanced Frequency Response (EFR) is expected to increase significantly in future low-carbon Great Britain (GB) power system. One way to provide EFR is to use power electronic compensators (PECs) for point-of-load voltage control (PVC) to exploit the voltage dependence of loads. This paper investigates the techno-economic feasibility of such technology in future GB power system by quantifying the total EFR obtainable through deploying PVC in the urban domestic sector, the investment cost of the installment and the economic and environmental benefits of using PVC. The quantification is based on a stochastic domestic demand model and generic medium and low-voltage distribution networks for the urban areas of GB and a stochastic unit commitment (SUC) model with constraints for secure post-fault frequency evolution is used for the value assessment. Two future energy scenarios in the backdrop of 2030 with `smart and `non-smart control of electric vehicles and heat pumps, under different levels of penetration of battery energy storage system (BESS) are considered to assess the value of PEC, as well as the associated payback period. It is demonstrated that PVC could effectively complement BESS towards EFR provision in future GB power system.
As the concern about climate change and energy shortage grow stronger, the incorporation of renewable energy in the power system in the future is foreseeable. In a hybrid power system with a large penetration of PV generation, PV panel is regarded as a negative load in the power system. With the accurate prediction of PV output power, load frequency control could be done by controlling the thermal and hydro power plant in the system. Combined Cycle Power Plant is widely used because of its great advantages of fast response and high efficiency. This article is focusing on the mathematical modelling and analyzing of Combined Cycle Power Plant for the frequency control purpose in a model of hybrid system with large renewable energy generation.
Security is one of the biggest concern in power system operation. Recently, the emerging cyber security threats to operational functions of power systems arouse high public attention, and cybersecurity vulnerability thus become an emerging topic to evaluate compromised operational performance under cyber attack. In this paper, vulnerability of cyber security of load frequency control (LFC) system, which is the key component in energy manage system (EMS), is assessed by exploiting the system response to attacks on LFC variables/parameters. Two types of attacks: 1) injection attack and 2) scale attack are considered for evaluation. Two evaluation criteria reflecting the damage on system stability and power generation are used to quantify system loss under cyber attacks. Through a sensitivity-based method and attack tree models, the vulnerability of different LFC components is ranked. In addition, a post-intrusion cyber attack detection scheme is proposed. Classification-based schemes using typical classification algorithms are studied and compared to identify different attack scenarios.
We consider the problem of distributed secondary frequency regulation in power networks such that stability and an optimal power allocation are attained. This is a problem that has been widely studied in the literature, and two main control schemes have been proposed, usually referred to as primal-dual and distributed averaging proportional-integral (DAPI) respectively. However, each has its limitations, with the former requiring knowledge of uncontrollable demand, which can be difficult to obtain in real time, and with the existing literature on the latter being based on static models for generation and demand. We propose a novel control scheme that overcomes these issues by making use of generation measurements in the control policy. In particular, our analysis allows distributed stability and optimality guarantees to be deduced with practical measurement requirements and permits a broad range of linear generation dynamics, that can be of higher order, to be incorporated in the power network. We show how the controller parameters can be selected in a computationally efficient way by solving appropriate linear matrix inequalities (LMIs). Furthermore, we demonstrate how the proposed analysis applies to several examples of turbine governor models. The practicality of our analysis is demonstrated with simulations on the Northeast Power Coordinating Council (NPCC) 140-bus system that verify that our proposed controller achieves convergence to the nominal frequency and an economically optimal power allocation.
The work aims to improve the existing fast load shedding algorithm for industrial power system to increase performance, reliability, and scalability for future expansions. The paper illustrates the development of a scalable algorithm to compute the shedding matrix, and the test performed on a model of the electric grid of an offshore platform. From this model it is possible to study the impact on the transients of various parameters, such as spinning reserve and delay time. Subsequently, the code is converted into Structured Text and implemented on an ABB PLC. The scalability of the load shedding algorithm is thus verified, confirming its performance with respect to the computation of the shedding matrix and the usefulness of the dynamic simulations during the design phase of the plant.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا