No Arabic abstract
The CMS collaboration reported an intriguing sim 3 sigma (local) excess at 96 GeV in the light Higgs-boson search in the diphoton decay mode. This mass coincides with a sim 2 sigma (local) excess in the bb final state at LEP. We present the interpretation of this possible signal as the lightest Higgs boson in the 2 Higgs Doublet Model with an additional real Higgs singlet (N2HDM). It is shown that the type II and type IV (flipped) of the N2HDM can perfectly accommodate both excesses simultaneously, while being in agreement with all experimental and theoretical constraints. The excesses are most easily accommodated in the type II N2HDM, which resembles the Yukawa structure of supersymmetric models. We discuss the experimental prospects for constraining our explanation at future $e^+e^-$ colliders, with concrete analyses based on the ILC prospects.
The CMS collaboration reported an intriguing sim 3 sigma (local) excess at 96 GeV in the light Higgs-boson search in the diphoton decay mode. This mass coincides with a sim 2 sigma (local) excess in the bb final state at LEP. We briefly review the proposed combined interpretations for the two excesses. In more detail we review the interpretation of this possible signal as the lightest Higgs boson in the 2 Higgs Doublet Model with an additional real Higgs singlet (N2HDM). We show which channels have the best prospects for the discovery of additional Higgs bosons at the upcoming Run 3 of the LHC.
The CMS collaboration reported an intriguing $sim 3 , sigma$ (local) excess at $96;$GeV in the light Higgs-boson search in the diphoton decay mode. This mass coincides with a $sim 2 , sigma$ (local) excess in the $bbar b$ final state at LEP. We present the interpretation of this possible signal as the lightest Higgs boson in the 2 Higgs Doublet Model with an additional real Higgs singlet (N2HDM). We show that the type II and type IV (flipped) of the N2HDM can perfectly accommodate both excesses simultaneously, while being in agreement with all experimental and theoretical constraints. The excesses are most easily accommodated in the type II N2HDM, which resembles the Yukawa structure of supersymmetric models. We discuss the experimental prospects for constraining our explanation via charged Higgs-boson decays at the LHC or direct production of the $sim 96,$GeV Higgs boson at a future lepton collider like the ILC.
We discuss a ~3 sigma signal (local) in the light Higgs-boson search in the diphoton decay mode at ~96 GeV as reported by CMS, together with a ~2 sigma excess (local) in the bb final state at LEP in the same mass range. We review the interpretation of this possible signal as a Higgs boson in the 2~Higgs Doublet Model with an additional real Higgs singlet (N2HDM). It is shown that the lightest Higgs boson of the N2HDM can perfectly fit both excesses simultaneously, while the full Higgs-boson sector is in agreement with all Higgs-boson measurements and exclusion bounds as well as other theoretical and experimental constraints. It is demonstrated that in particular the N2HDM type~II and can fit the data best, leading to a supersymmetric interpretation. The NMSSM and the munuSSM are briefly reviewed in this respect.
We consider a gauged U(1)$_{B-L}$ (Baryon-minus-Lepton number) extension of the Standard Model (SM), which is anomaly-free in the presence of three Right-Handed Neutrinos (RHNs). Associated with the U(1)$_{B-L}$ symmetry breaking the RHNs acquire their Majorana masses and then play the crucial role to generate the neutrino mass matrix by the seesaw mechanism. Towards the experimental confirmation of the seesaw mechanism, we investigate a RHN pair production through the U(1)$_{B-L}$ gauge boson ($Z^prime$) at the 250 GeV International Linear Collider (ILC). The $Z^prime$ gauge boson has been searched at the Large Hadron Collider (LHC) Run-2 and its production cross section is already severely constrained. The constraint will become more stringent by the future experiments with the High-Luminosity upgrade of the LHC (HL-LHC). We find a possibility that even after a null $Z^prime$ boson search result at the HL-LHC, the 250 GeV ILC can search for the RHN pair production through the final state with same-sign dileptons plus jets, which is a `smoking-gun signature from the Majorana nature of RHNs. In addition, some of RHNs are long-lived and leave a clean signature with a displaced vertex. Therefore, the 250 GeV ILC can operate as not only a Higgs Factory but also a RHN discovery machine to explore the origin of the Majorana neutrino mass generation, namely the seesaw mechanism.
We discuss a $sim 3,sigma$ signal (local) in the light Higgs-boson search in the diphoton decay mode at $sim 96$ GeV as reported by CMS, together with a $sim 2,sigma$ excess (local) in the $b bar b$ final state at LEP in the same mass range. We interpret this possible signal as a Higgs boson in the 2 Higgs Doublet Model with an additional real Higgs singlet (N2HDM). We find that the lightest Higgs boson of the N2HDM can perfectly fit both excesses simultaneously, while the second lightest state is in full agreement with the Higgs-boson measurements at 125 GeV, and the full Higgs-boson sector is in agreement with all Higgs exclusion bounds from LEP, the Tevatron and the LHC as well as other theoretical and experimental constraints. We show that only the N2HDM type II and IV can fit both the LEP excess and the CMS excess with a large ggF production component at $sim 96$ GeV. We derive bounds on the N2HDM Higgs sector from a fit to both excesses and describe how this signal can be further analyzed at the LHC and at future $e^+e^-$ colliders, such as the ILC.