No Arabic abstract
We discuss a ~3 sigma signal (local) in the light Higgs-boson search in the diphoton decay mode at ~96 GeV as reported by CMS, together with a ~2 sigma excess (local) in the bb final state at LEP in the same mass range. We review the interpretation of this possible signal as a Higgs boson in the 2~Higgs Doublet Model with an additional real Higgs singlet (N2HDM). It is shown that the lightest Higgs boson of the N2HDM can perfectly fit both excesses simultaneously, while the full Higgs-boson sector is in agreement with all Higgs-boson measurements and exclusion bounds as well as other theoretical and experimental constraints. It is demonstrated that in particular the N2HDM type~II and can fit the data best, leading to a supersymmetric interpretation. The NMSSM and the munuSSM are briefly reviewed in this respect.
The CMS collaboration reported an intriguing $sim 3 , sigma$ (local) excess at $96;$GeV in the light Higgs-boson search in the diphoton decay mode. This mass coincides with a $sim 2 , sigma$ (local) excess in the $bbar b$ final state at LEP. We present the interpretation of this possible signal as the lightest Higgs boson in the 2 Higgs Doublet Model with an additional real Higgs singlet (N2HDM). We show that the type II and type IV (flipped) of the N2HDM can perfectly accommodate both excesses simultaneously, while being in agreement with all experimental and theoretical constraints. The excesses are most easily accommodated in the type II N2HDM, which resembles the Yukawa structure of supersymmetric models. We discuss the experimental prospects for constraining our explanation via charged Higgs-boson decays at the LHC or direct production of the $sim 96,$GeV Higgs boson at a future lepton collider like the ILC.
We discuss a $sim 3,sigma$ signal (local) in the light Higgs-boson search in the diphoton decay mode at $sim 96$ GeV as reported by CMS, together with a $sim 2,sigma$ excess (local) in the $b bar b$ final state at LEP in the same mass range. We interpret this possible signal as a Higgs boson in the 2 Higgs Doublet Model with an additional real Higgs singlet (N2HDM). We find that the lightest Higgs boson of the N2HDM can perfectly fit both excesses simultaneously, while the second lightest state is in full agreement with the Higgs-boson measurements at 125 GeV, and the full Higgs-boson sector is in agreement with all Higgs exclusion bounds from LEP, the Tevatron and the LHC as well as other theoretical and experimental constraints. We show that only the N2HDM type II and IV can fit both the LEP excess and the CMS excess with a large ggF production component at $sim 96$ GeV. We derive bounds on the N2HDM Higgs sector from a fit to both excesses and describe how this signal can be further analyzed at the LHC and at future $e^+e^-$ colliders, such as the ILC.
The CMS collaboration reported an intriguing sim 3 sigma (local) excess at 96 GeV in the light Higgs-boson search in the diphoton decay mode. This mass coincides with a sim 2 sigma (local) excess in the bb final state at LEP. We present the interpretation of this possible signal as the lightest Higgs boson in the 2 Higgs Doublet Model with an additional real Higgs singlet (N2HDM). It is shown that the type II and type IV (flipped) of the N2HDM can perfectly accommodate both excesses simultaneously, while being in agreement with all experimental and theoretical constraints. The excesses are most easily accommodated in the type II N2HDM, which resembles the Yukawa structure of supersymmetric models. We discuss the experimental prospects for constraining our explanation at future $e^+e^-$ colliders, with concrete analyses based on the ILC prospects.
The CMS collaboration reported an intriguing sim 3 sigma (local) excess at 96 GeV in the light Higgs-boson search in the diphoton decay mode. This mass coincides with a sim 2 sigma (local) excess in the bb final state at LEP. We briefly review the proposed combined interpretations for the two excesses. In more detail we review the interpretation of this possible signal as the lightest Higgs boson in the 2 Higgs Doublet Model with an additional real Higgs singlet (N2HDM). We show which channels have the best prospects for the discovery of additional Higgs bosons at the upcoming Run 3 of the LHC.
Cascade decays of new scalars into final states with multiple photons and possibly quarks may lead to distinctive experimental signatures at high-energy colliders. Such signals are even more striking if the scalars are highly boosted, as when produced from the decay of a much heavier resonance. We study this type of events within the framework of the minimal stealth boson model, an anomaly-free $text{U}(1)_{Y}$ extension of the Standard Model with two complex scalar singlets. It is shown that, while those signals may have cross sections that might render them observable with LHC Run 2 data, they have little experimental coverage. We also establish a connection with a CMS excess observed in searches for new scalars decaying into diphoton final states near 96 GeV. In particular, we conclude that the predicted multiphoton signatures are compatible with such excess.