Do you want to publish a course? Click here

How fast can you update your MST? (Dynamic algorithms for cluster computing)

105   0   0.0 ( 0 )
 Added by Lawrence Li
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Imagine a large graph that is being processed by a cluster of computers, e.g., described by the $k$-machine model or the Massively Parallel Computation Model. The graph, however, is not static; instead it is receiving a constant stream of updates. How fast can the cluster process the stream of updates? The fundamental question we want to ask in this paper is whether we can update the graph fast enough to keep up with the stream. We focus specifically on the problem of maintaining a minimum spanning tree (MST), and we give an algorithm for the $k$-machine model that can process $O(k)$ graph updates per $O(1)$ rounds with high probability. (And these results carry over to the Massively Parallel Computation (MPC) model.) We also show a lower bound, i.e., it is impossible to process $k^{1+epsilon}$ updates in $O(1)$ rounds. Thus we provide a nearly tight answer to the question of how fast a cluster can respond to a stream of graph modifications while maintaining an MST.



rate research

Read More

This paper provides an algorithmic framework for obtaining fast distributed algorithms for a highly-dynamic setting, in which *arbitrarily many* edge changes may occur in each round. Our algorithm significantly improves upon prior work in its combination of (1) having an $O(1)$ amortized time complexity, (2) using only $O(log{n})$-bit messages, (3) not posing any restrictions on the dynamic behavior of the environment, (4) being deterministic, (5) having strong guarantees for intermediate solutions, and (6) being applicable for a wide family of tasks. The tasks for which we deduce such an algorithm are maximal matching, $(degree+1)$-coloring, 2-approximation for minimum weight vertex cover, and maximal independent set (which is the most subtle case). For some of these tasks, node insertions can also be among the allowed topology changes, and for some of them also abrupt node deletions.
We give an improved randomized CONGEST algorithm for distance-$2$ coloring that uses $Delta^2+1$ colors and runs in $O(log n)$ rounds, improving the recent $O(log Delta cdot log n)$-round algorithm in [Halldorsson, Kuhn, Maus; PODC 20]. We then improve the time complexity to $O(log Delta) + 2^{O(sqrt{loglog n})}$.
In this paper we show that approximation can help reduce the space used for self-stabilization. In the classic emph{state model}, where the nodes of a network communicate by reading the states of their neighbors, an important measure of efficiency is the space: the number of bits used at each node to encode the state. In this model, a classic requirement is that the algorithm has to be emph{silent}, that is, after stabilization the states should not change anymore. We design a silent self-stabilizing algorithm for the problem of minimum spanning tree, that has a trade-off between the quality of the solution and the space needed to compute it.
In literature computer architectures are frequently claimed to be highly flexible, typically implying there exist trade-offs between flexibility and performance or energy efficiency. Processor flexibility, however, is not very sharply defined, and as such these claims can not be validated, nor can such hypothetical relations be fully understood and exploited in the design of computing systems. This paper is an attempt to introduce scientific rigour to the notion of flexibility in computing systems.
State-of-the-art summarization systems are trained and evaluated on massive datasets scraped from the web. Despite their prevalence, we know very little about the underlying characteristics (data noise, summarization complexity, etc.) of these datasets, and how these affect system performance and the reliability of automatic metrics like ROUGE. In this study, we manually analyze 600 samples from three popular summarization datasets. Our study is driven by a six-class typology which captures different noise types (missing facts, entities) and degrees of summarization difficulty (extractive, abstractive). We follow with a thorough analysis of 27 state-of-the-art summarization models and 5 popular metrics, and report our key insights: (1) Datasets have distinct data quality and complexity distributions, which can be traced back to their collection process. (2) The performance of models and reliability of metrics is dependent on sample complexity. (3) Faithful summaries often receive low scores because of the poor diversity of references. We release the code, annotated data and model outputs.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا