No Arabic abstract
We present a computational approach for solving reaction-diffusion equations on evolving surfaces which have been obtained from cell image data. It is based on finite element spaces defined on surface triangulations extracted from time series of 3D images. A model for the transport of material between the subsequent surfaces is required where we postulate a velocity in normal direction. We apply the technique to image data obtained from a spreading neutrophil cell. By simulating FRAP experiments we investigate the impact of the evolving geometry on the recovery. We find that for idealised FRAP conditions, changes in membrane geometry, easily account for differences of $times 10$ in recovery half-times, which shows that experimentalists must take great care when interpreting membrane photobleaching results. We also numerically solve an activator -- depleted substrate system and report on the effect of the membrane movement on the pattern evolution.
Reaction-diffusion equations are widely used as the governing evolution equations for modeling many physical, chemical, and biological processes. Here we derive reaction-diffusion equations to model transport with reactions on a one-dimensional domain that is evolving. The model equations, which have been derived from generalized continuous time random walks, can incorporate complexities such as subdiffusive transport and inhomogeneous domain stretching and shrinking. A method for constructing analytic expressions for short time moments of the position of the particles is developed and moments calculated from this approach are shown to compare favourably with results from random walk simulations and numerical integration of the reaction transport equation. The results show the important role played by the initial condition. In particular, it strongly affects the time dependence of the moments in the short time regime by introducing additional drift and diffusion terms. We also discuss how our reaction transport equation could be applied to study the spreading of a population on an evolving interface.
Among the main actors of organism development there are morphogens, which are signaling molecules diffusing in the developing organism and acting on cells to produce local responses. Growth is thus determined by the distribution of such signal. Meanwhile, the diffusion of the signal is itself affected by the changes in shape and size of the organism. In other words, there is a complete coupling between the diffusion of the signal and the change of the shapes. In this paper, we introduce a mathematical model to investigate such coupling. The shape is given by a manifold, that varies in time as the result of a deformation given by a transport equation. The signal is represented by a density, diffusing on the manifold via a diffusion equation. We show the non-commutativity of the transport and diffusion evolution by introducing a new concept of Lie bracket between the diffusion and the transport operator. We also provide numerical simulations showing this phenomenon.
In this paper, we extend the class of kernel methods, the so-called diffusion maps (DM) and ghost point diffusion maps (GPDM), to solve the time-dependent advection-diffusion PDE on unknown smooth manifolds without and with boundaries. The core idea is to directly approximate the spatial components of the differential operator on the manifold with a local integral operator and combine it with the standard implicit time difference scheme. When the manifold has a boundary, a simplified version of the GPDM approach is used to overcome the bias of the integral approximation near the boundary. The Monte-Carlo discretization of the integral operator over the point cloud data gives rise to a mesh-free formulation that is natural for randomly distributed points, even when the manifold is embedded in high-dimensional ambient space. Here, we establish the convergence of the proposed solver on appropriate topologies, depending on the distribution of point cloud data and boundary type. We provide numerical results to validate the convergence results on various examples that involve simple geometry and an unknown manifold. Additionally, we also found positive results in solving the one-dimensional viscous Burgers equation where GPDM is adopted with a pseudo-spectral Galerkin framework to approximate nonlinear advection term.
We introduce a method-of-lines formulation of the closest point method, a numerical technique for solving partial differential equations (PDEs) defined on surfaces. This is an embedding method, which uses an implicit representation of the surface in a band containing the surface. We define a modified equation in the band, obtained in a straightforward way from the original evolution PDE, and show that the solutions of this equation are consistent with those of the surface equation. The resulting system can then be solved with standard implicit or explicit time-stepping schemes, and the solutions in the band can be restricted to the surface. Our derivation generalizes existing formulations of the closest point method and is amenable to standard convergence analysis.
In this paper, we introduce and analyse a surface finite element discretization of advection-diffusion equations with uncertain coefficients on evolving hypersurfaces. After stating unique solvability of the resulting semi-discrete problem, we prove optimal error bounds for the semi-discrete solution and Monte Carlo samplings of its expectation in appropriate Bochner spaces. Our theoretical findings are illustrated by numerical experiments in two and three space dimensions.