Do you want to publish a course? Click here

Langevin equations for reaction-diffusion processes

92   0   0.0 ( 0 )
 Added by Federico Benitez
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

For reaction-diffusion processes with at most bimolecular reactants, we derive well-behaved, numerically tractable, exact Langevin equations that govern a stochastic variable related to the response field in field theory. Using duality relations, we show how the particle number and other quantities of interest can be computed. Our work clarifies long-standing conceptual issues encountered in field-theoretical approaches and paves the way for systematic numerical and theoretical analyses of reaction-diffusion problems.



rate research

Read More

We investigate the nature of the effective dynamics and statistical forces obtained after integrating out nonequilibrium degrees of freedom. To be explicit, we consider the Rouse model for the conformational dynamics of an ideal polymer chain subject to steady driving. We compute the effective dynamics for one of the many monomers by integrating out the rest of the chain. The result is a generalized Langevin dynamics for which we give the memory and noise kernels and the effective force, and we discuss the inherited nonequilibrium aspects.
The ultimate goal of physics is finding a unique equation capable of describing the evolution of any observable quantity in a self-consistent way. Within the field of statistical physics, such an equation is known as the generalized Langevin equation (GLE). Nevertheless, the formal and exact GLE is not particularly useful, since it depends on the complete history of the observable at hand, and on hidden degrees of freedom typically inaccessible from a theoretical point of view. In this work, we propose the use of deep neural networks as a new avenue for learning the intricacies of the unknowns mentioned above. By using machine learning to eliminate the unknowns from GLEs, our methodology outperforms previous approaches (in terms of efficiency and robustness) where general fitting functions were postulated. Finally, our work is tested against several prototypical examples, from a colloidal systems and particle chains immersed in a thermal bath, to climatology and financial models. In all cases, our methodology exhibits an excellent agreement with the actual dynamics of the observables under consideration.
Reaction-diffusion equations are widely used as the governing evolution equations for modeling many physical, chemical, and biological processes. Here we derive reaction-diffusion equations to model transport with reactions on a one-dimensional domain that is evolving. The model equations, which have been derived from generalized continuous time random walks, can incorporate complexities such as subdiffusive transport and inhomogeneous domain stretching and shrinking. A method for constructing analytic expressions for short time moments of the position of the particles is developed and moments calculated from this approach are shown to compare favourably with results from random walk simulations and numerical integration of the reaction transport equation. The results show the important role played by the initial condition. In particular, it strongly affects the time dependence of the moments in the short time regime by introducing additional drift and diffusion terms. We also discuss how our reaction transport equation could be applied to study the spreading of a population on an evolving interface.
We describe a tracer in a bath of soft Brownian colloids by a particle coupled to the density field of the other bath particles. From the Dean equation, we derive an exact equation for the evolution of the whole system, and show that the density field evolution can be linearized in the limit of a dense bath. This linearized Dean equation with a tracer taken apart is validated by the reproduction of previous results on the mean-field liquid structure and transport properties. Then, the tracer is submitted to an external force and we compute the density profile around it, its mobility and its diffusion coefficient. Our results exhibit effects such as bias enhanced diffusion that are very similar to those observed in the opposite limit of a hard core lattice gas, indicating the robustness of these effects. Our predictions are successfully tested against molecular dynamics simulations.
124 - S. Eule , R. Friedrich 2009
The role of external forces in systems exhibiting anomalous diffusion is discussed on the basis of the describing Langevin equations. Since there exist different possibilities to include the effect of an external field the concept of {it biasing} and {it decoupled} external fields is introduced. Complementary to the recently established Langevin equations for anomalous diffusion in a time-dependent external force-field [{it Magdziarz et al., Phys. Rev. Lett. {bf 101}, 210601 (2008)}] the Langevin formulation of anomalous diffusion in a decoupled time-dependent force-field is derived.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا