Do you want to publish a course? Click here

Reducing the Unfairness of Coordinated Inverter Dispatch in PV-Rich Distribution Networks

42   0   0.0 ( 0 )
 Added by Peter Lusis
 Publication date 2020
  fields
and research's language is English
 Authors Peter Lusis




Ask ChatGPT about the research

The integration of a high share of solar photovoltaics (PV) in distribution networks requires advanced voltage control technologies or network augmentation, both associated with significant investment costs. An alternative is to prevent new customers from installing solar PV systems, but this is against the common goal of increasing renewable energy generation. This paper demonstrates that solar PV curtailment in low voltage areas can be reduced and fairly distributed among PV owners by centrally coordinating the operation of PV inverters. The optimal inverter active and reactive power operation points are computed by solving a multi-objective optimization problem with a fairness objective. The main results show that fair optimal inverter dispatch (FOID) results in less power curtailment than passive voltage regulation based on Volt/VAr droop control, especially at high solar PV to load ratios. The effectiveness of the model is demonstrated on a residential low voltage network.



rate research

Read More

Multilevel inverters are used to improve powerquality and reduce component stresses. This paper describesand compares two multilevel cascaded three phase inverterimplementations with two different modulation techniques: PhaseShifted Pulse Width Modulation, and Nearest Level Control.Further analysis will show required number of inverter levelswith respect to modulation techniques to provide desired powerand power quality to resistive load or grid. Cascaded inverterwill be designed and simulated to draw power from PV cells.
The increasing penetration of distributed energy resources (DERs) in the distribution networks has turned the conventionally passive load buses into active buses that can provide grid services for the transmission system. To take advantage of the DERs in the distribution networks, this letter formulates a transmission-and-distribution (T&D) systems co-optimization problem that achieves economic dispatch at the transmission level and optimal voltage regulation at the distribution level by leveraging large generators and DERs. A primal-dual gradient algorithm is proposed to solve this optimization problem jointly for T&D systems, and a distributed market-based equivalent of the gradient algorithm is used for practical implementation. The results are corroborated by numerical examples with the IEEE 39-Bus system connected with 7 different distribution networks.
73 - Peter Lusis 2020
Autonomous droop control PV inverters have improved voltage regulation compared to the inverters without grid support functions, but more flexible control techniques will be required as the number of solar photovoltaic (PV) installations increases. This paper studies three inverter future deployment scenarios with droop control inverters, non-exporting inverters, and coordinated inverter control (CIC). The network operation and the interaction between various inverter control methods are studied by simulating inverter operation on two low-voltage networks. Considering 30% PV penetration as the base case, we demonstrate that coordinated inverters can mitigate overvoltages and voltage fluctuations caused by the tripping of passive inverters in 85% of PV location cases when at least as many coordinated as passive inverters are deployed on the 114-node test feeder. However, this rate reduced to 37% with the IEEE 906-node network demonstrating that the deployment of coordinated inverter control may not be able to reverse passive inverter-related voltage disturbances when the build-up of passive inverters has reached a certain threshold. The aggregated PV output from coordinated inverters can be also used to provide grid support services. When the low-voltage networks operate close to the upper voltage limits, the change in the power output from coordinated inverters following a regulation request may be partially offset by passive inverters. Considering an equal number of passive and coordinated inverters, this paper shows that for each unit of the down-regulation request delivered by coordinated inverters, passive inverter output may increase by up to 0.2 units and decrease by up to 0.45 units during coordinated inverter up-regulation.
49 - Peter Lusis 2020
Coordinated photovoltaic inverter control with centralized coordination of curtailment can increase the amount of energy sent from low-voltage (LV) distribution networks to the grid while respecting voltage constraints. First, this paper quantifies the improvement of such an approach relative to autonomous droop control, in terms of PV curtailment and line losses in balanced networks. It then extends the coordinated inverter control to unbalanced distribution networks. Finally, it formulates a control algorithm for different objectives such as the fairer distribution of PV curtailment and rewarding PV customers for utilizing the excess power locally. The coordinated inverter control algorithm is tested on the 114-node and 906-bus LV European test feeders with cable sizes between 50mm^2 and 240mm^2 and validated with reference to OpenDSS. The results demonstrate that coordinated inverter control is superior when applied to high impedance LV networks and LV networks constrained by the distribution transformer capacity limits compared to autonomous inverters. On the 95mm^2 overhead line, it yields a 2% increase on average in the utilized PV output with up to 5% increase for some PV locations at higher penetration levels. Up to a 20% increase in PV hosting capacity was observed for location scenarios with PV system clustering.
In this paper, we formulate a cycling cost aware economic dispatch problem that co-optimizes generation and storage dispatch while taking into account cycle based storage degradation cost. Our approach exploits the Rainflow cycle counting algorithm to quantify storage degradation for each charging and discharging half-cycle based on its depth. We show that the dispatch is optimal for individual participants in the sense that it maximizes the profit of generators and storage units, under price taking assumptions. We further provide a condition under which the optimal storage response is unique for given market clearing prices. Simulations using data from the New York Independent System Operator (NYISO) illustrate the optimization framework. In particular, they show that the generation-centric dispatch that does not account for storage degradation is insufficient to guarantee storage profitability.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا