Do you want to publish a course? Click here

Storage Degradation Aware Economic Dispatch

61   0   0.0 ( 0 )
 Added by Rajni Kant Bansal
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

In this paper, we formulate a cycling cost aware economic dispatch problem that co-optimizes generation and storage dispatch while taking into account cycle based storage degradation cost. Our approach exploits the Rainflow cycle counting algorithm to quantify storage degradation for each charging and discharging half-cycle based on its depth. We show that the dispatch is optimal for individual participants in the sense that it maximizes the profit of generators and storage units, under price taking assumptions. We further provide a condition under which the optimal storage response is unique for given market clearing prices. Simulations using data from the New York Independent System Operator (NYISO) illustrate the optimization framework. In particular, they show that the generation-centric dispatch that does not account for storage degradation is insufficient to guarantee storage profitability.



rate research

Read More

The correlations of multiple renewable power plants (RPPs) should be fully considered in the power system with very high penetration renewable power integration. This paper models the uncertainties, spatial correlation of multiple RPPs based on Copula theory and actual probability historical histograms by one-dimension distributions for economic dispatch (ED) problem. An efficient dynamic renewable power scenario generation method based on Gibbs sampling is proposed to generate renewable power scenarios considering the uncertainties, spatial correlation and variability (temporal correlation) of multiple RPPs, in which the sampling space complexity do not increase with the number of RPPs. Distribution-based and scenario-based methods are proposed and compared to solve the real-time ED problem with multiple RPPs. Results show that the proposed dynamic scenario generation method is much more consist with the actual renewable power. The proposed ED methods show better understanding for the uncertainties, spatial and temporal correlations of renewable power and more economical compared with the traditional ones.
The increasing penetration of distributed energy resources (DERs) in the distribution networks has turned the conventionally passive load buses into active buses that can provide grid services for the transmission system. To take advantage of the DERs in the distribution networks, this letter formulates a transmission-and-distribution (T&D) systems co-optimization problem that achieves economic dispatch at the transmission level and optimal voltage regulation at the distribution level by leveraging large generators and DERs. A primal-dual gradient algorithm is proposed to solve this optimization problem jointly for T&D systems, and a distributed market-based equivalent of the gradient algorithm is used for practical implementation. The results are corroborated by numerical examples with the IEEE 39-Bus system connected with 7 different distribution networks.
In this paper, we investigate the problem of coordination between economic dispatch (ED) and demand response (DR) in multi-energy systems (MESs), aiming to improve the economic utility and reduce the waste of energy in MESs. Since multiple energy sources are coupled through energy hubs (EHs), the supply-demand constraints are nonconvex. To deal with this issue, we propose a linearization method to transform the coordination problem to a convex social welfare optimization one. Then a decentralized algorithm based on parallel Alternating Direction Method of Multipliers (ADMM) and dynamic average tracking protocol is developed, where each agent could only make decisions based on information from their neighbors. Moreover, by using variational inequality and Lyapunov-based techniques, we show that our algorithm could always converge to the global optimal solution. Finally, a case study on the modified IEEE 14-bus network verifies the feasibility and effectiveness of our algorithm.
117 - Yue Song , David J. Hill , Tao Liu 2021
This paper introduces network flexibility into the chance constrained economic dispatch (CCED). In the proposed model, both power generations and line susceptances become variables to minimize the expected generation cost and guarantee a low probability of constraint violation in terms of generations and line flows under renewable uncertainties. We figure out the mechanism of network flexibility against uncertainties from the analytical form of CCED. On one hand, renewable uncertainties shrink the usable line capacities in the line flow constraints and aggravate transmission congestion. On the other hand, network flexibility significantly mitigates congestion by regulating the base-case line flows and reducing the line capacity shrinkage caused by uncertainties. Further, we propose an alternate iteration solver for this problem, which is efficient. With duality theory, we propose two convex subproblems with respect to generation-related variables and network-related variables, respectively. A satisfactory solution can be obtained by alternately solving these two subproblems. The case studies on the IEEE 14-bus system and IEEE 118-bus system suggest that network flexibility contributes much to operational economy under renewable uncertainties.
We develop a fast algorithm to construct the robustness degradation function, which describes quantitatively the relationship between the proportion of systems guaranteeing the robustness requirement and the radius of the uncertainty set. This function can be applied to predict whether a controller design based on an inexact mathematical model will perform satisfactorily when implemented on the true system.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا