Do you want to publish a course? Click here

Interaction Between Coordinated and Droop Control PV Inverters

74   0   0.0 ( 0 )
 Added by Peter Lusis
 Publication date 2020
and research's language is English
 Authors Peter Lusis




Ask ChatGPT about the research

Autonomous droop control PV inverters have improved voltage regulation compared to the inverters without grid support functions, but more flexible control techniques will be required as the number of solar photovoltaic (PV) installations increases. This paper studies three inverter future deployment scenarios with droop control inverters, non-exporting inverters, and coordinated inverter control (CIC). The network operation and the interaction between various inverter control methods are studied by simulating inverter operation on two low-voltage networks. Considering 30% PV penetration as the base case, we demonstrate that coordinated inverters can mitigate overvoltages and voltage fluctuations caused by the tripping of passive inverters in 85% of PV location cases when at least as many coordinated as passive inverters are deployed on the 114-node test feeder. However, this rate reduced to 37% with the IEEE 906-node network demonstrating that the deployment of coordinated inverter control may not be able to reverse passive inverter-related voltage disturbances when the build-up of passive inverters has reached a certain threshold. The aggregated PV output from coordinated inverters can be also used to provide grid support services. When the low-voltage networks operate close to the upper voltage limits, the change in the power output from coordinated inverters following a regulation request may be partially offset by passive inverters. Considering an equal number of passive and coordinated inverters, this paper shows that for each unit of the down-regulation request delivered by coordinated inverters, passive inverter output may increase by up to 0.2 units and decrease by up to 0.45 units during coordinated inverter up-regulation.



rate research

Read More

This paper outlines reduced-order models for grid-forming virtual-oscillator-controlled inverters with nested current- and voltage-control loops, and current-limiting action for over-current protection. While a variety of model-reduction methods have been proposed to tame complexity in inverter models, previous efforts have not included the impact of current-reference limiting. In addition to acknowledging the current-limiting action, the reduced-order models we outline are tailored to networks with resistive and inductive interconnecting lines. Our analytical approach is centered on a smooth function approximation for the current-reference limiter, participation factor analysis to identify slow- and fast-varying states, and singular perturbation to systematically eliminate the fast states. Computational benefits and accuracy of the reduced-order models are benchmarked via numerical simulations that compare them to higher-order averaged and switched models.
Developing effective strategies to rapidly support grid frequency while minimizing loss in case of severe contingencies is an important requirement in power systems. While distributed responsive load demands are commonly adopted for frequency regulation, it is difficult to achieve both rapid response and global accuracy in a practical and cost-effective manner. In this paper, the cyber-physical design of an Internet-of-Things (IoT) enabled system, called Grid Sense, is presented. Grid Sense utilizes a large number of distributed appliances for frequency emergency support. It features a local power loss $Delta P$ estimation approach for frequency emergency control based on coordinated edge intelligence. The specifically designed smart outlets of Grid Sense detect the frequency disturbance event locally using the parameters sent from the control center to estimate active power loss in the system and to make rapid and accurate switching decisions soon after a severe contingency. Based on a modified IEEE 24-bus system, numerical simulations and hardware experiments are conducted to demonstrate the frequency support performance of Grid Sense in the aspects of accuracy and speed. It is shown that Grid Sense equipped with its local $Delta P$-estimation frequency control approach can accurately and rapidly prevent the drop of frequency after a major power loss.
This paper proposes a computational method to efficiently and quickly estimate stability regions of droop control slopes for modular multilevel converter (MMC)-based multiterminal dc (MTDC) systems. The proposed method is based on a general small-signal model consisting of a dc grid with arbitrary topology and MMCs with dq controllers. The general small-signal model developed by a systematic way can be used for small-disturbance stability analysis. To verify the developed small-signal model, a comparison between the developed model calculated in MATLAB and the detailed switching model simulated in PSCAD/EMTDC is conducted, which demonstrates the accuracy of the developed small-signal model. Based on the eigenvalues sensitivity and the Taylor Series of eigenvalues, a set of inequality constraints are derived and used to efficiently estimate the stability regions of all coupled slopes of the droop characteristics. It is helpful for efficiently designing and adjusting the droop controller parameters for the MMC-MTDC systems. The effectiveness of the proposed method is demonstrated by the several examinations including the supremum test and the stability region sketch on accuracy and feasibility.
Power electronic converters for integrating renewable energy resources into power systems can be divided into grid-forming and grid-following inverters. They possess certain similarities, but several important differences, which means that the relationship between them is quite subtle and sometimes obscure. In this article, a new perspective based on duality is proposed to create new insights. It successfully unifies the grid interfacing and synchronization characteristics of the two inverter types in a symmetric, elegant, and technology-neutral form. Analysis shows that the grid-forming and grid-following inverters are duals of each other in several ways including a) synchronization controllers: frequency droop control and phase-locked loop (PLL); b) grid-interfacing characteristics: current-following voltage-forming and voltage-following current-forming; c) swing characteristics: current-angle swing and voltage-angle swing; d) inner-loop controllers: output impedance shaping and output admittance shaping; and e) grid strength compatibility: strong-grid instability and weak-grid instability. The swing equations are also derived in dual form for two inverter types, which reveal the dynamic interaction between the grid strength, the synchronization controllers, and the inner-loop controllers. Insights are generated into cases of poor stability. The theoretical analysis and time-domain simulation results are used to illustrate cases of instability for simple single-inverter-infinite-bus systems and a multi-inverter power network.
Power system restoration is an important part of system planning. Power utilities are required to maintain black start capable generators that can energize the transmission system and provide cranking power to non-blackstart capable generators. Traditionally, hydro and diesel units are used as black start capable generators. With the increased penetration of bulk size solar farms, inverter based generation can play an important role in faster and parallel black start thus ensuring system can be brought back into service without the conventional delays that can be expected with limited black start generators. Inverter-based photovoltaic (PV) power plants have advantages that are suitable for black start. This paper proposes the modeling, control, and simulation of a grid-forming inverter-based PV-battery power plant that can be used as a black start unit. The inverter control includes both primary and secondary control loops to imitate the control of a conventional synchronous machine. The proposed approach is verified using a test system modified from the IEEE 9-bus system in the time-domain electromagnetic transient simulation tool PSCAD. The simulation results shows voltage and frequency stability during a multi-step black-start and network energization process.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا