Do you want to publish a course? Click here

Phenomenological model explaining Hubble Tension origin

281   0   0.0 ( 0 )
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

One of the problem revealed recently in cosmology is a so-called Hubble tension (HT), which is the difference between values of the present Hubble constant, measured by observation of the universe at redshift $z lesssim 1$, and by observations of a distant universe with CMB fluctuations originated at $z sim 1100$. In this paper we suggest, that this discrepancy may be explained by deviation of the cosmological expansion from a standard Lambda-CDM %simple Friedman model of a flat universe, during the period after recombination at $z lesssim 1100$, due to action of additional variable component of a dark energy of different origin.. We suppose, that a dark matter (DM) has a common origin with a variable component of a dark energy (DEV). DE presently may have two components, one of which is the Einstein constant $Lambda$, and another, smaller component DEV ($Lambda_V$) comes from the remnants of a scalar fields responsible for inflation. Due to common origin and interconnections the densities of DEV and DM are supposed to be connected, and remain almost constant during, at least, the time after recombination, when we may approximate $rho_{DM}=alpha rho_{DEV}$. This part of the dark energy in not connected with the cosmological constant $Lambda$, but is defined by existence of scalar fields with a variable density. Taking into account the influence of DEV on the universe expansion we find the value of $alpha$ which could remove the HT problem. In order to maintain the almost constant DEV/DM energy density ratio during the time interval at $z<1100$, we suggest an existence of a wide mass DM particle distribution.



rate research

Read More

We investigate a generalized form of the phenomenologically emergent dark energy model, known as generalized emergent dark energy (GEDE), introduced by Li and Shafieloo [Astrophys. J. {bf 902}, 58 (2020)] in light of a series of cosmological probes and considering the evolution of the model at the level of linear perturbations. This model introduces a free parameter $Delta$ that can discriminate between the $Lambda$CDM (corresponds to $Delta=0$) or the phenomenologically emergent dark energy (PEDE) (corresponds to $Delta=1$) models, allowing us to determine which model is preferred most by the fit of the observational datasets. We find evidence in favor of the GEDE model for Planck alone and in combination with R19, while the Bayesian model comparison is inconclusive when Supernovae Type Ia or BAO data are included. In particular, we find that $Lambda$CDM model is disfavored at more than $2sigma$ CL for most of the observational datasets considered in this work and PEDE is in agreement with Planck 2018+BAO+R19 combination within $1sigma$ CL.
105 - Mohamed Rameez 2019
The heliocentric redshifts ($z_mathrm{hel}$) reported for 150 Type Ia supernovae in the Pantheon compilation are significantly discrepant from their corresponding values in the JLA compilation. Both catalogues include corrections to the redshifts and magnitudes of the supernovae to account for the motion of the heliocentric frame relative to the `CMB rest frame, as well as corrections for the directionally coherent bulk motion of local galaxies with respect to this frame. The latter is done employing modelling of peculiar velocities which assume the $Lambda$CDM cosmological model but nevertheless provide evidence for residual bulk flows which are discordant with this model (implying that the observed Universe is in fact anisotropic). Until recently such peculiar velocity corrections in the Pantheon catalogue were made at redshifts exceeding 0.2 although there is no data on which to base such corrections. We study the impact of these vexed issues on the 4.4 $sigma$ discrepancy between the Hubble constant of $H_0 = 67.4 pm 0.5$ km/s/Mpc inferred from observations of CMB anisotropies by Planck assuming $Lambda$CDM, and the measurement of $H_0 = 73.5 pm 1.4$ km/s/Mpc by the SH0ES project which extended the local distance ladder using Type Ia supernovae. Using the same methodology as the latter study we find that for supernovae whose redshifts are discrepant between Pantheon and JLA with $Delta z_mathrm{hel} > 0.0025$, the Pantheon redshifts favour $H_0 simeq 72$ km/s/Mpc, while the JLA redshifts favour $H_0 simeq 68$ km/s/Mpc. Thus the discrepancies between SNe Ia datasets are sufficient to undermine the claimed `Hubble tension. We further note the systematic variation of $H_0$ by $sim$ 6-9 km/s/Mpc across the sky seen in multiple datasets, implying that it cannot be measured locally to better than $sim$ 10% in a model-independent manner.
Braneworld models with induced gravity exhibit phantom-like behaviour of the effective equation of state of dark energy. They can, therefore, naturally accommodate higher values of $H_0$, preferred by recent local measurements, while satisfying the CMB constraints. We test the background evolution in such phantom braneworld scenarios with the current observational datasets. We find that the phantom braneworld prefers a higher value of $H_0$ even without the R19 prior, thereby providing a much better fit to the local measurements. Although this braneworld model cannot fully satisfy all combinations of cosmological observables, among existing dark energy candidates the phantom brane provides one of the most compelling explanations of cosmic evolution.
It is shown, from the two independent approaches of McCrea-Milne and of Zeldovich, that one can fully recover the set equations corresponding to the relativistic equations of the expanding universe of Friedmann-Lemaitre-Robertson-Walker geometry. Although similar, the Newtonian and relativistic set of equations have a principal difference in the content and hence define two flows, local and global ones, thus naturally exposing the Hubble tension at the presence of the cosmological constant Lambda. From this, we obtain absolute constraints on the lower and upper values for the local Hubble parameter, sqrt{Lambda c^2/3} simeq 56.2$ and sqrt{Lambda c^2} simeq 97.3 (km/sec Mpc^{-1}), respectively. The link to the so-called maximum force--tension issue in cosmological models is revealed.
The current Hubble constant tension is usually presented by comparing constraints on $H_0$ only. However, the post-recombination background cosmic evolution is determined by two parameters in the standard $Lambda$CDM model, the Hubble constant ($H_0$) and todays matter energy fraction ($Omega_{rm{m}}$). If we therefore compare all constraints individually in the $H_0$-$Omega_{rm{m}}$ plane, (1) various constraints can be treated as independently as possible, (2) single-sided constraints are easier to consider, (3) compatibility among different constraints can be viewed in a more robust way, (4) the model dependence of each constraint is clear, and (5) whether or not a nonstandard model is able to reconcile all constraints in tension can be seen more effectively. We perform a systematic comparison of different constraints in the $H_0$-$Omega_{rm{m}}$ space based on a flat $Lambda$CDM model, treating them as separately as possible. Constraints along different degeneracy directions consistently overlap in one region of the space, with the local measurement from Cepheid variable-calibrated supernovae being the most outlying, followed by the time-delay strong-lensing result. Considering the possibility that some nonstandard physics may reconcile the constraints, we provide a general discussion on nonstandard models with modifications at high, mid, or low redshifts, and the effect of local environmental factors. Due to the different responses of individual constraints to a modified model, it is not easy for nonstandard models to reconcile all constraints if none of them have unaccounted-for systematic effects.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا