Do you want to publish a course? Click here

Investigating the Hubble Constant Tension -- Two Numbers in the Standard Cosmological Model

75   0   0.0 ( 0 )
 Added by Katherine Mack
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The current Hubble constant tension is usually presented by comparing constraints on $H_0$ only. However, the post-recombination background cosmic evolution is determined by two parameters in the standard $Lambda$CDM model, the Hubble constant ($H_0$) and todays matter energy fraction ($Omega_{rm{m}}$). If we therefore compare all constraints individually in the $H_0$-$Omega_{rm{m}}$ plane, (1) various constraints can be treated as independently as possible, (2) single-sided constraints are easier to consider, (3) compatibility among different constraints can be viewed in a more robust way, (4) the model dependence of each constraint is clear, and (5) whether or not a nonstandard model is able to reconcile all constraints in tension can be seen more effectively. We perform a systematic comparison of different constraints in the $H_0$-$Omega_{rm{m}}$ space based on a flat $Lambda$CDM model, treating them as separately as possible. Constraints along different degeneracy directions consistently overlap in one region of the space, with the local measurement from Cepheid variable-calibrated supernovae being the most outlying, followed by the time-delay strong-lensing result. Considering the possibility that some nonstandard physics may reconcile the constraints, we provide a general discussion on nonstandard models with modifications at high, mid, or low redshifts, and the effect of local environmental factors. Due to the different responses of individual constraints to a modified model, it is not easy for nonstandard models to reconcile all constraints if none of them have unaccounted-for systematic effects.



rate research

Read More

The current cosmological probes have provided a fantastic confirmation of the standard $Lambda$ Cold Dark Matter cosmological model, that has been constrained with unprecedented accuracy. However, with the increase of the experimental sensitivity a few statistically significant tensions between different independent cosmological datasets emerged. While these tensions can be in portion the result of systematic errors, the persistence after several years of accurate analysis strongly hints at cracks in the standard cosmological scenario and the need for new physics. In this Letter of Interest we will focus on the $4.4sigma$ tension between the Planck estimate of the Hubble constant $H_0$ and the SH0ES collaboration measurements. After showing the $H_0$ evaluations made from different teams using different methods and geometric calibrations, we will list a few interesting new physics models that could solve this tension and discuss how the next decade experiments will be crucial.
The Hubble constant ($H_0$) estimated from the local Cepheid-supernova (SN) distance ladder is in 3-$sigma$ tension with the value extrapolated from cosmic microwave background (CMB) data assuming the standard cosmological model. Whether this tension represents new physics or systematic effects is the subject of intense debate. Here, we investigate how new, independent $H_0$ estimates can arbitrate this tension, assessing whether the measurements are consistent with being derived from the same model using the posterior predictive distribution (PPD). We show that, with existing data, the inverse distance ladder formed from BOSS baryon acoustic oscillation measurements and the Pantheon SN sample yields an $H_0$ posterior near-identical to the Planck CMB measurement. The observed local distance ladder value is a very unlikely draw from the resulting PPD. Turning to the future, we find that a sample of $sim50$ binary neutron star standard sirens (detectable within the next decade) will be able to adjudicate between the local and CMB estimates.
We investigate a generalized form of the phenomenologically emergent dark energy model, known as generalized emergent dark energy (GEDE), introduced by Li and Shafieloo [Astrophys. J. {bf 902}, 58 (2020)] in light of a series of cosmological probes and considering the evolution of the model at the level of linear perturbations. This model introduces a free parameter $Delta$ that can discriminate between the $Lambda$CDM (corresponds to $Delta=0$) or the phenomenologically emergent dark energy (PEDE) (corresponds to $Delta=1$) models, allowing us to determine which model is preferred most by the fit of the observational datasets. We find evidence in favor of the GEDE model for Planck alone and in combination with R19, while the Bayesian model comparison is inconclusive when Supernovae Type Ia or BAO data are included. In particular, we find that $Lambda$CDM model is disfavored at more than $2sigma$ CL for most of the observational datasets considered in this work and PEDE is in agreement with Planck 2018+BAO+R19 combination within $1sigma$ CL.
String theory has no parameter except the string scale $M_S$, so the Planck scale $M_text{Pl}$, the supersymmetry-breaking scale, the EW scale $m_text{EW}$ as well as the vacuum energy density (cosmological constant) $Lambda$ are to be determined dynamically at any local minimum solution in the string theory landscape. Here we consider a model that links the supersymmetric electroweak phenomenology (bottom up) to the string theory motivated flux compactification approach (top down). In this model, supersymmetry is broken by a combination of the racetrack Kahler uplift mechanism, which naturally allows an exponentially small positive $Lambda$ in a local minimum, and the anti-D3-brane in the KKLT scenario. In the absence of the Higgs doublets in the supersymmetric standard model, one has either a small $Lambda$ or a big enough SUSY-breaking scale, but not both. The introduction of the Higgs fields (with their soft terms) allows a small $Lambda$ and a big enough SUSY-breaking scale simultaneously. Since an exponentially small $Lambda$ is statistically preferred (as the properly normalized probability distribution $P(Lambda)$ diverges at $Lambda=0^{+}$), identifying the observed $Lambda_{rm obs}$ to the median value $Lambda_{50%}$ yields $m_{rm EW} sim 100$ GeV. We also find that the warped anti-D3-brane tension has a SUSY-breaking scale of $100m_{rm EW}$ in the landscape while the SUSY-breaking scale that directly correlates with the Higgs fields in the visible sector has a value of $m_{rm EW}$.
We present an improved Minimal Variance (MV) method for using a radial peculiar velocity sample to estimate the average of the three-dimensional velocity field over a spherical volume, which leads to an easily interpretable bulk flow measurement. The only assumption required is that the velocity field is irrotational. The resulting bulk flow estimate is particularly insensitive to smaller scale flows. We also introduce a new constraint into the MV method that ensures that bulk flow estimates are independent of the value of the Hubble constant $H_o$; this is important given the tension between the locally measured $H_o$ and that obtained from the cosmic background radiation observations. We apply our method to the textit{CosmicFlows-3} catalogue and find that, while the bulk flows for shallower spheres are consistent with the standard cosmological model, there is some tension between the bulk flow in a spherical volume with radius $150$hmpc and its expectations; we find only a $sim 2%$ chance of obtaining a bulk flow as large or larger in the standard cosmological model with textit{Planck} parameters
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا