No Arabic abstract
I present briefly some facts about nonequilibrium renormalized perturbation theory, correcting recent misleading statements in [E. Mu~noz, F. Zamani, L. Merker, T. A. Costi, and S. Kirchner, Journal of Physics: Conf. Series 807, 092001 (2017)], and discuss some results of this work using rSPT at equilibrium.
We study equilibrium and nonequilibrium properties of the single-impurity Anderson model with a power-law pseudogap in the density of states. In equilibrium, the model is known to display a quantum phase transition from a generalized Kondo to a local moment phase. In the present work, we focus on the extension of these phases beyond equilibrium, i.e. under the influence of a bias voltage. Within the auxiliary master equation approach combined with a scheme based on matrix product states (MPS) we are able to directly address the current-carrying steady state. Starting with the equilibrium situation, we first corroborate our results by comparing with a direct numerical evaluation of ground state spectral properties of the system by MPS. Here, a scheme to locate the phase boundary by extrapolating the power-law exponent of the self energy produces a very good agreement with previous results obtained by the numerical renormalization group. Our nonequilibrium study as a function of the applied bias voltage is then carried out for two points on either side of the phase boundary. In the Kondo regime the resonance in the spectral function is splitted as a function of the increasing bias voltage. The local moment regime, instead, displays a dip in the spectrum near the position of the chemical potentials. Similar features are observed in the corresponding self energies. The Kondo split peaks approximately obey a power-law behavior as a function of frequency, whose exponents depend only slightly on voltage. Finally, the differential conductance in the Kondo regime shows a peculiar maximum at finite voltages, whose height, however, is below the accuracy level.
In a recent Comment, Kolf et al. (cond-mat/0503669) state that our analysis of the Fano resonance for Anderson impurity systems [Luo et al., Phys. Rev. Lett 92, 256602 (2004)] is incorrect. Here we want to point out that their comments are not based on firm physical results and their criticisms are unjustified and invalid.
We use different numerical approaches to calculate the double occupancy and mag- netic susceptibility as a function of a bias voltage in an Anderson impurity model. Specifically, we compare results from the Matsubara-voltage quantum Monte-Carlo approach (MV-QMC), the scattering-states numerical renormalization group (SNRG), and real-time quantum Monte-Carlo (RT-QMC), covering Coulomb repulsions ranging from the weak-coupling well into the strong- coupling regime. We observe a distinctly different behavior of the double occupancy and the magnetic response. The former measures charge fluctuations and thus only indirectly exhibits the Kondo scale, while the latter exhibits structures on the scale of the equilibrium Kondo tempera- ture. The Matsubara-voltage approach and the scattering-states numerical renormalization group yield consistent values for the magnetic susceptibility in the Kondo limit. On the other hand, all three numerical methods produce different results for the behavior of charge fluctuations in strongly interacting dots out of equilibrium.
We present here the details of a method [A. B. Culver and N. Andrei, Phys. Rev. B 103, L201103 (2021)] for calculating the time-dependent many-body wavefunction that follows a local quench. We apply the method to the voltage-driven nonequilibrium Kondo model to find the exact time-evolving wavefunction following a quench where the dot is suddenly attached to the leads at $t=0$. The method, which does not use Bethe ansatz, also works in other quantum impurity models and may be of wider applicability. We show that the long-time limit (with the system size taken to infinity first) of the time-evolving wavefunction of the Kondo model is a current-carrying nonequilibrium steady state that satisfies the Lippmann-Schwinger equation. We show that the electric current in the time-evolving wavefunction is given by a series expression that can be expanded either in weak coupling or in strong coupling, converging to all orders in the steady-state limit in either case. The series agrees to leading order with known results in the well-studied regime of weak antiferromagnetic coupling and also reveals a universal regime of strong ferromagnetic coupling with Kondo temperature $T_K^{(F)} = D e^{-frac{3pi^2}{8} rho |J|}$ ($J<0$, $rho|J|toinfty$). In this regime, the differential conductance $dI/dV$ reaches the unitarity limit $2e^2/h$ asymptotically at large voltage or temperature.
A recent comment on our work (Phys. Rev. Lett., vol. 110, 016601 (2013)) by A.A.Aligia claims that we made mistakes in the evaluation of the lesser quantities. It is further claimed that the distribution function of the single-particle selfenergy of the interacting region in the Fermi liquid regime, e.g. at small bias voltage, low temperature, and small frequency, is continuous. These claims are based on a comparison of the particle-hole symmetric case with results obtained from the approach of A.A.Aligia. We disagree with these claims and show that the discrepancies that the comment alludes to originate from a violation of Ward identities by the method employed in the comment. A comparison of our approach with the numerical renormalization group shows perfect agreement for the symmetric case.