No Arabic abstract
We report sympathetic cooling of $^{113}$Cd$^+$ by laser-cooled $^{40}$Ca$^+$ in a linear Paul trap for microwave clocks. Long-term low-temperature confinement of $^{113}$Cd$^+$ ions was achieved. The temperature of these ions was measured at $90(10)$ mK, and the corresponding uncertainty arising from the second-order Doppler shifts was estimated to a level of $2times10^{-17}$. Up to $4.2times10^5$ Cd$^+$ ions were confined in the trap, and the confinement time constant was measured to be 84 hours. After three hours of confinement, there were still $10^5$ Cd$^+$ ions present, indicating that this Ca$^+$--Cd$^+$ dual ion system is surprisingly stable. The ac Stark shift was induced by the Ca$^+$ lasers and fluorescence, which was carefully estimated to an accuracy of $5.4(0.5)times10^{-17}$ using a high-accuracy textit{ab initio} approach. The Dick-effect-limited Allan deviation was also deduced because deadtimes were shorter. These results indicate that a microwave clock based on this sympathetic cooling scheme holds promise in providing ultra-high frequency accuracy and stability.
We present first indications of sympathetic cooling between two neutral, optically trapped atomic species. Lithium and cesium atoms are simultaneously stored in an optical dipole trap formed by the focus of a CO$_2$ laser, and allowed to interact for a given period of time. The temperature of the lithium gas is found to decrease when in thermal contact with cold cesium. The timescale of thermalization yields an estimate for the Li-Cs cross-section.
We present and derive analytic expressions for a fundamental limit to the sympathetic cooling of ions in radio-frequency traps using cold atoms. The limit arises from the work done by the trap electric field during a long-range ion-atom collision and applies even to cooling by a zero-temperature atomic gas in a perfectly compensated trap. We conclude that in current experimental implementations this collisional heating prevents access to the regimes of single-partial-wave atom-ion interaction or quantized ion motion. We determine conditions on the atom-ion mass ratio and on the trap parameters for reaching the s-wave collision regime and the trap ground state.
In this paper, direct observation of micromotion for multiple ions in a laser-cooled trapped ion crystal is discussed along with a novel measurement technique for micromotion amplitude. Micromotion is directly observed using a time-resolving, single-photon sensitive camera that provides both fluorescence and position data for each ion on the nanosecond time scale. Micromotion amplitude and phase for each ion in the crystal are measured, allowing this method to be sensitive to tilts and shifts of the ion chain from the null of the radiofrequency quadrupole potential in the linear trap. Spatial resolution makes this micromotion detection technique suitable for complex ion configurations, including two-dimensional geometries. It does not require any additional equipment or laser beams, and the modulation of the cooling lasers or trap voltages is not necessary for detection, as it is in other methods.
The microwave clock frequency of the $|5s~^2S_{1/2}, F=0,m_F=0 rangle leftrightarrow |5s~^2S_{1/2}, F=1,m_F=0 rangle$ transition in the $^{113}$Cd$^+$ ion has been reported as 15199862855.0192(10) Hz [Opt. Lett. {bf 40}, 4249 (2015)]. Fractional systematic due to the black-body radiation (BBR) shift ($beta$) arising from the Stark effect in the above clock transition was used as $-1.1 times 10^{-16}$ from our unpublished preliminary estimation. We present here a precise value as $beta=-1.815(77) times 10^{-16}$ by carrying out rigorous calculations of third-order polarizabilities of the hyperfine levels associated with the clock transition. This is determined by evaluating matrix elements of the magnetic dipole hyperfine interaction Hamiltonian, electric dipole operator and energies between many low-lying states of $^{113}$Cd$^+$. We employ all-order relativistic many-body theories in the frameworks of Fock-space coupled-cluster and relativistic multi-configuration Dirac-Fock methods.
We study the quantum stability of the dynamics of ions in a Paul trap. We revisit the results of Wang et al. [Phys. Rev. A 52, 1419 (1995)], which showed that quantum trajectories did not have the same region of stability as their classical counterpart, contrary to what is obtained from a Floquet analysis of the motion in the periodic trapping field. Using numerical simulations of the full wave-packet dynamics, we confirm that the classical trapping criterion are fully applicable to quantum motion, when considering both the expectation value of the position of the wave packet and its width.