Do you want to publish a course? Click here

Robustness Analysis of Networked Control Systems with Aging Status

228   0   0.0 ( 0 )
 Added by Bin Han
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

As an emerging metric of communication systems, Age of Information (AoI) has been derived to have a critical impact in networked control systems with unreliable information links. This work sets up a novel model of outage probability in a loosely constrained control system as a function of the feedback AoI, and conducts numerical simulations to validate the model.



rate research

Read More

Wireless networked control systems (WNCSs) provide a key enabling technique for Industry Internet of Things (IIoT). However, in the literature of WNCSs, most of the research focuses on the control perspective, and has considered oversimplified models of wireless communications which do not capture the key parameters of a practical wireless communication system, such as latency, data rate and reliability. In this paper, we focus on a WNCS, where a controller transmits quantized and encoded control codewords to a remote actuator through a wireless channel, and adopt a detailed model of the wireless communication system, which jointly considers the inter-related communication parameters. We derive the stability region of the WNCS. If and only if the tuple of the communication parameters lies in the region, the average cost function, i.e., a performance metric of the WNCS, is bounded. We further obtain a necessary and sufficient condition under which the stability region is $n$-bounded, where $n$ is the control codeword blocklength. We also analyze the average cost function of the WNCS. Such analysis is non-trivial because the finite-bit control-signal quantizer introduces a non-linear and discontinuous quantization function which makes the performance analysis very difficult. We derive tight upper and lower bounds on the average cost function in terms of latency, data rate and reliability. Our analytical results provide important insights into the design of the optimal parameters to minimize the average cost within the stability region.
As 5G and Internet-of-Things (IoT) are deeply integrated into vertical industries such as autonomous driving and industrial robotics, timely status update is crucial for remote monitoring and control. In this regard, Age of Information (AoI) has been proposed to measure the freshness of status updates. However, it is just a metric changing linearly with time and irrelevant of context-awareness. We propose a context-based metric, named as Urgency of Information (UoI), to measure the nonlinear time-varying importance and the non-uniform context-dependence of the status information. This paper first establishes a theoretical framework for UoI characterization and then provides UoI-optimal status updating and user scheduling schemes in both single-terminal and multi-terminal cases. Specifically, an update-index-based scheme is proposed for a single-terminal system, where the terminal always updates and transmits when its update index is larger than a threshold. For the multi-terminal case, the UoI of the proposed scheduling scheme is proven to be upper-bounded and its decentralized implementation by Carrier Sensing Multiple Access with Collision Avoidance (CSMA/CA) is also provided. In the simulations, the proposed updating and scheduling schemes notably outperform the existing ones such as round robin and AoI-optimal schemes in terms of UoI, error-bound violation and control system stability.
This paper considers a wireless networked control system (WNCS) consisting of a dynamic system to be controlled (i.e., a plant), a sensor, an actuator and a remote controller for mission-critical Industrial Internet of Things (IIoT) applications. A WNCS has two types of wireless transmissions, i.e., the sensors measurement transmission to the controller and the controllers command transmission to the actuator. In this work, we consider a practical half-duplex controller, which introduces a novel transmission-scheduling problem for WNCSs. A frequent scheduling of sensors transmission results in a better estimation of plant states at the controller and thus a higher quality of control command, but it leads to a less frequent/timely control of the plant. Therefore, considering the overall control performance of the plant in terms of its average cost function, there exists a fundamental tradeoff between the sensors and the controllers transmissions. We formulate a new problem to optimize the transmission-scheduling policy for minimizing the long-term average cost function. We derive the necessary and sufficient condition of the existence of a stationary and deterministic optimal policy that results in a bounded average cost in terms of the transmission reliabilities of the sensor-to-controller and controller-to-actuator channels. Also, we derive an easy-to-compute suboptimal policy, which notably reduces the average cost of the plant compared to a naive alternative-scheduling policy.
In this paper, we consider a networked control system (NCS) in which an dynamic plant system is connected to a controller via a temporally correlated wireless fading channel. We focus on communication power design at the sensor to minimize a weighted average state estimation error at the remote controller subject to an average transmit power constraint of the sensor. The power control optimization problem is formulated as an infinite horizon average cost Markov decision process (MDP). We propose a novel continuous-time perturbation approach and derive an asymptotically optimal closed-form value function for the MDP. Under this approximation, we propose a low complexity dynamic power control solution which has an event- driven control structure. We also establish technical conditions for asymptotic optimality, and sufficient conditions for NCS stability under the proposed scheme.
Networked robotic systems, such as connected vehicle platoons, can improve the safety and efficiency of transportation networks by allowing for high-speed coordination. To enable such coordination, these systems rely on networked communications. This can make them susceptible to cyber attacks. Though security methods such as encryption or specially designed network topologies can increase the difficulty of successfully executing such an attack, these techniques are unable to guarantee secure communication against an attacker. More troublingly, these security methods are unable to ensure that individual agents are able to detect attacks that alter the content of specific messages. To ensure resilient behavior under such attacks, this paper formulates a networked linear time-varying version of dynamic watermarking in which each agent generates and adds a private excitation to the input of its corresponding robotic subsystem. This paper demonstrates that such a method can enable each agent in a networked robotic system to detect cyber attacks. By altering measurements sent between vehicles, this paper illustrates that an attacker can create unstable behavior within a platoon. By utilizing the dynamic watermarking method proposed in this paper, the attack is detected, allowing the vehicles in the platoon to gracefully degrade to a non-communicative control strategy that maintains safety across a variety of scenarios.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا