Do you want to publish a course? Click here

Giant Stark splitting of an exciton in bilayer MoS$_2$

128   0   0.0 ( 0 )
 Added by Bernhard Urbaszek
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Transition metal dichalcogenides (TMDs) constitute a versatile platform for atomically thin optoelectronics devices and spin-valley memory applications. In monolayers optical absorption is strong, but the transition energy is not tunable as the neutral exciton has essentially no out-of-plane electric dipole. In contrast, interlayer exciton transitions in heterobilayers are widely tunable in applied electric fields, but their coupling to light is considerably reduced. Here, we show tuning over 120 meV of interlayer excitons with high oscillator strength in bilayer MoS2. These shifts are due to the quantum confined Stark effect, here the electron is localised to one of the layers yet the hole is delocalised across the bilayer. We optically probe the interaction between intra- and interlayer excitons as they are energetically tuned into resonance. This allows studying their mixing supported by beyond standard density functional theory calculations including excitonic effects. In MoS2 trilayers our experiments uncover two types of interlayer excitons with and without in-built electric dipoles, respectively. Highly tunable excitonic transitions with large oscillator strength and in-built dipoles, that lead to considerable exciton-exciton interactions, hold great promise for non-linear optics with polaritons.

rate research

Read More

84 - Yao Li , G. Li , Xiaokun Zhai 2020
By pumping nonresonantly a MoS$_2$ monolayer at $13$ K under a circularly polarized cw laser, we observe exciton energy redshifts that break the degeneracy between B excitons with opposite spin. The energy splitting increases monotonically with the laser power reaching as much as $18$ meV, while it diminishes with the temperature. The phenomenon can be explained theoretically by considering simultaneously the bandgap renormalization which gives rise to the redshift and exciton-exciton Coulomb exchange interaction which is responsible for the spin-dependent splitting. Our results offer a simple scheme to control the valley degree of freedom in MoS$_2$ monolayer and provide an accessible method in investigating many-body exciton exciton interaction in such materials.
We report magneto-optical spectroscopy of gated monolayer MoS$_2$ in high magnetic fields up to 28T and obtain new insights on the many-body interaction of neutral and charged excitons with the resident charges of distinct spin and valley texture. For neutral excitons at low electron doping, we observe a nonlinear valley Zeeman shift due to dipolar spin-interactions that depends sensitively on the local carrier concentration. As the Fermi energy increases to dominate over the other relevant energy scales in the system, the magneto-optical response depends on the occupation of the fully spin-polarized Landau levels in both $K/K^{prime}$ valleys. This manifests itself in a many-body state. Our experiments demonstrate that the exciton in monolayer semiconductors is only a single particle boson close to charge neutrality. We find that away from charge neutrality it smoothly transitions into polaronic states with a distinct spin-valley flavour that is defined by the Landau level quantized spin and valley texture.
In the emerging world of twisted bilayer structures, the possible configurations are limitless, which enables for a rich landscape of electronic properties. In this paper, we focus on twisted bilayer transition metal dichalcogenides (TMDCs) and study its properties by means of an accurate tight-binding model. We build structures with different angles and find that the so-called flatbands emerge when the twist angle is sufficiently small (around 7.3$^{circ}$). Interestingly, the band gap can be tuned up to a 2.2% (51 meV) when the twist angle in the relaxed sample varies from 21.8$^{circ}$ to 0.8$^{circ}$. Furthermore, when looking at local density of states we find that the band gap varies locally along the moir`e pattern due to the change in the coupling between layers at different sites. Finally, we also find that the system can suffer a transition from a semiconductor to a metal when a sufficiently strong electric field is applied. Our study can serve as a guide for the practical engineering of the TMDCs based optoelectronic devices.
The optical susceptibility is a local, minimally-invasive and spin-selective probe of the ground state of a two-dimensional electron gas. We apply this probe to a gated monolayer of MoS$_2$. We demonstrate that the electrons are spin polarized. Of the four available bands, only two are occupied. These two bands have the same spin but different valley quantum numbers. We argue that strong Coulomb interactions are a key aspect of this spontaneous symmetry breaking. The Bohr radius is so small that even electrons located far apart in phase space interact, facilitating exchange couplings to align the spins.
72 - Saban M. Hus 2020
Non-volatile resistive switching, also known as memristor effect in two terminal devices, has emerged as one of the most important components in the ongoing development of high-density information storage, brain-inspired computing, and reconfigurable systems. Recently, the unexpected discovery of memristor effect in atomic monolayers of transitional metal dichalcogenide sandwich structures has added a new dimension of interest owing to the prospects of size scaling and the associated benefits. However, the origin of the switching mechanism in atomic sheets remains uncertain. Here, using monolayer MoS$_2$ as a model system, atomistic imaging and spectroscopy reveal that metal substitution into sulfur vacancy results in a non-volatile change in resistance. The experimental observations are corroborated by computational studies of defect structures and electronic states. These remarkable findings provide an atomistic understanding on the non-volatile switching mechanism and open a new direction in precision defect engineering, down to a single defect, for achieving optimum performance metrics including memory density, switching energy, speed, and reliability using atomic nanomaterials.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا