Do you want to publish a course? Click here

Selective Convolutional Network: An Efficient Object Detector with Ignoring Background

62   0   0.0 ( 0 )
 Added by Yangyang Qin
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

It is well known that attention mechanisms can effectively improve the performance of many CNNs including object detectors. Instead of refining feature maps prevalently, we reduce the prohibitive computational complexity by a novel attempt at attention. Therefore, we introduce an efficient object detector called Selective Convolutional Network (SCN), which selectively calculates only on the locations that contain meaningful and conducive information. The basic idea is to exclude the insignificant background areas, which effectively reduces the computational cost especially during the feature extraction. To solve it, we design an elaborate structure with negligible overheads to guide the network where to look next. Its end-to-end trainable and easy-embedding. Without additional segmentation datasets, we explores two different train strategies including direct supervision and indirect supervision. Extensive experiments assess the performance on PASCAL VOC2007 and MS COCO detection datasets. Results show that SSD and Pelee integrated with our method averagely reduce the calculations in a range of 1/5 and 1/3 with slight loss of accuracy, demonstrating the feasibility of SCN.



rate research

Read More

135 - Ziwei Wang , Ziyi Wu , Jiwen Lu 2020
In this paper, we propose a binarized neural network learning method called BiDet for efficient object detection. Conventional network binarization methods directly quantize the weights and activations in one-stage or two-stage detectors with constrained representational capacity, so that the information redundancy in the networks causes numerous false positives and degrades the performance significantly. On the contrary, our BiDet fully utilizes the representational capacity of the binary neural networks for object detection by redundancy removal, through which the detection precision is enhanced with alleviated false positives. Specifically, we generalize the information bottleneck (IB) principle to object detection, where the amount of information in the high-level feature maps is constrained and the mutual information between the feature maps and object detection is maximized. Meanwhile, we learn sparse object priors so that the posteriors are concentrated on informative detection prediction with false positive elimination. Extensive experiments on the PASCAL VOC and COCO datasets show that our method outperforms the state-of-the-art binary neural networks by a sizable margin.
Object detection is a basic but challenging task in computer vision, which plays a key role in a variety of industrial applications. However, object detectors based on deep learning usually require greater storage requirements and longer inference time, which hinders its practicality seriously. Therefore, a trade-off between effectiveness and efficiency is necessary in practical scenarios. Considering that without constraint of pre-defined anchors, anchor-free detectors can achieve acceptable accuracy and inference speed simultaneously. In this paper, we start from an anchor-free detector called TTFNet, modify the structure of TTFNet and introduce multiple existing tricks to realize effective server and mobile solutions respectively. Since all experiments in this paper are conducted based on PaddlePaddle, we call the model as PAFNet(Paddle Anchor Free Network). For server side, PAFNet can achieve a better balance between effectiveness (42.2% mAP) and efficiency (67.15 FPS) on a single V100 GPU. For moblie side, PAFNet-lite can achieve a better accuracy of (23.9% mAP) and 26.00 ms on Kirin 990 ARM CPU, outperforming the existing state-of-the-art anchor-free detectors by significant margins. Source code is at https://github.com/PaddlePaddle/PaddleDetection.
Object detection is one of the most important areas in computer vision, which plays a key role in various practical scenarios. Due to limitation of hardware, it is often necessary to sacrifice accuracy to ensure the infer speed of the detector in practice. Therefore, the balance between effectiveness and efficiency of object detector must be considered. The goal of this paper is to implement an object detector with relatively balanced effectiveness and efficiency that can be directly applied in actual application scenarios, rather than propose a novel detection model. Considering that YOLOv3 has been widely used in practice, we develop a new object detector based on YOLOv3. We mainly try to combine various existing tricks that almost not increase the number of model parameters and FLOPs, to achieve the goal of improving the accuracy of detector as much as possible while ensuring that the speed is almost unchanged. Since all experiments in this paper are conducted based on PaddlePaddle, we call it PP-YOLO. By combining multiple tricks, PP-YOLO can achieve a better balance between effectiveness (45.2% mAP) and efficiency (72.9 FPS), surpassing the existing state-of-the-art detectors such as EfficientDet and YOLOv4.Source code is at https://github.com/PaddlePaddle/PaddleDetection.
Mainstream object detectors based on the fully convolutional network has achieved impressive performance. While most of them still need a hand-designed non-maximum suppression (NMS) post-processing, which impedes fully end-to-end training. In this paper, we give the analysis of discarding NMS, where the results reveal that a proper label assignment plays a crucial role. To this end, for fully convolutional detectors, we introduce a Prediction-aware One-To-One (POTO) label assignment for classification to enable end-to-end detection, which obtains comparable performance with NMS. Besides, a simple 3D Max Filtering (3DMF) is proposed to utilize the multi-scale features and improve the discriminability of convolutions in the local region. With these techniques, our end-to-end framework achieves competitive performance against many state-of-the-art detectors with NMS on COCO and CrowdHuman datasets. The code is available at https://github.com/Megvii-BaseDetection/DeFCN .
We introduce an extremely computation-efficient CNN architecture named ShuffleNet, which is designed specially for mobile devices with very limited computing power (e.g., 10-150 MFLOPs). The new architecture utilizes two new operations, pointwise group convolution and channel shuffle, to greatly reduce computation cost while maintaining accuracy. Experiments on ImageNet classification and MS COCO object detection demonstrate the superior performance of ShuffleNet over other structures, e.g. lower top-1 error (absolute 7.8%) than recent MobileNet on ImageNet classification task, under the computation budget of 40 MFLOPs. On an ARM-based mobile device, ShuffleNet achieves ~13x actual speedup over AlexNet while maintaining comparable accuracy.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا