No Arabic abstract
We theoretically investigate the energy relaxation rate of magnons and phonons near the resonance points to clarify the underlying mechanism of heat transport in ferromagnetic materials. We find that the simple two-temperature model is valid for the one-phonon/one-magnon process, as the rate of energy exchange between magnons and phonons is proportional to the temperature difference between them, and it is independent of temperature in the high temperature limit. We found that the magnon-phonon relaxation time due to the one-phonon/one-magnon interaction could be reduced to 1.48 $mu s$ at the resonance point by applying an external magnetic field. It means that the resonance effect plays a significant role in enhancing the total magnon-phonon energy exchange rate, apart from the higher order interaction processes.
The interaction between magnetic and acoustic excitations have recently inspired many interdisciplinary studies ranging from fundamental physics to circuit implementation. Specifically, the exploration of their coherent interconversion enabled via the magnetoelastic coupling opens a new playground combining straintronics and spintronics, and provides a unique platform for building up on-chip coherent information processing networks with miniaturized magnonic and acoustic devices. In this Perspective, we will focus on the recent progress of magnon-phonon coupled dynamic systems, including materials, circuits, imaging and new physics. In particular, we highlight the unique features such as nonreciprocal acoustic wave propagation and strong coupling between magnons and phonons in magnetic thin-film systems, which provides a unique platform for their coherent manipulation and transduction. We will also review the frontier of surface acoustic wave resonators in coherent quantum transduction and discuss how the novel acoustic circuit design can be applied in microwave spintronics.
We demonstrate theoretically that the thermal Hall effect of magnons in collinear antiferromagnetic insulators is an indicator of magnetic and topological phase transitions in the magnon spectrum. The transversal heat current of magnons caused by a thermal gradient is calculated for an antiferromagnet on a honeycomb lattice. An applied magnetic field drives the system from the antiferromagnetic phase via a spin-flop phase into the field-polarized phase. Besides these magnetic phase transitions we find topological phase transitions within the spin-flop phase. Both types of transitions manifest themselves in prominent and distinguishing features in the thermal conductivities; depending on the temperature, the conductivity changes by several orders of magnitude, providing a tool to discern experimentally the two types of phase transitions. We include numerical results for the van der Waals magnet MnPS$_3$.
Relaxation of linear magnetization dynamics is well described by the viscous Gilbert damping processes. However, for strong excitations, nonlinear damping processes such as the decay via magnon-magnon interactions emerge and trigger additional relaxation channels. Here, we use space- and time-resolved microfocused Brillouin light scattering spectroscopy and micromagnetic simulations to investigate the nonlinear relaxation of strongly driven propagating spin waves in yttrium iron garnet nanoconduits. We show that the nonlinear magnon relaxation in this highly quantized system possesses intermodal features, i.e., magnons scatter to higher-order quantized modes through a cascade of scattering events. We further show how to control such intermodal dissipation processes by quantization of the magnon band in single-mode devices, where this phenomenon approaches its fundamental limit. Our study extends the knowledge about nonlinear propagating spin waves in nanostructures which is essential for the construction of advanced spin-wave elements as well as the realization of Bose-Einstein condensates in scaled systems.
The phonon density of states (DOS) and magnetic excitation spectrum of polycrystalline BiFeO$_3$ were measured for temperatures $200 leq T leq 750,$K, using inelastic neutron scattering (INS). Our results indicate that the magnetic spectrum of BiFeO$_3$ closely resembles that of similar Fe perovskites, such as LaFeO$_3$, despite the cycloid modulation in BiFeO$_3$. We do not find any evidence for a spin gap. A strong $T$-dependence of the phonon DOS was found, with a marked broadening of the whole spectrum, providing evidence of strong anharmonicity. This anharmonicity is corroborated by large-amplitude motions of Bi and O ions observed with neutron diffraction. These results highlight the importance of spin-phonon coupling in this material.
We consider nonlinear magnon interactions in collinear antiferromagnetic (AF) insulators at finite temperatures. In AF systems with biaxial magnetocrystalline anisotropy, we implement a self-consistent Hartree-Fock mean-field approximation to explore the nonlinear interactions. The resulting nonlinear magnon interactions separate into two-magnon intra- and interband scattering processes. Furthermore, we compute the temperature dependence of the magnon spectrum due to nonlinear magnon interactions for square and hexagonal lattices. Measurements of the predicted AF resonance at different temperatures can probe nonlinear interactions close to the magnetic phase transitions. Our findings establish a framework for exploring magnonic phenomena where interactions are essential, e.g., magnon transport and Bose-Einstein condensation of magnons.