Do you want to publish a course? Click here

Anharmonic Phonons and Magnons in BiFeO3

181   0   0.0 ( 0 )
 Added by Olivier Delaire
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

The phonon density of states (DOS) and magnetic excitation spectrum of polycrystalline BiFeO$_3$ were measured for temperatures $200 leq T leq 750,$K, using inelastic neutron scattering (INS). Our results indicate that the magnetic spectrum of BiFeO$_3$ closely resembles that of similar Fe perovskites, such as LaFeO$_3$, despite the cycloid modulation in BiFeO$_3$. We do not find any evidence for a spin gap. A strong $T$-dependence of the phonon DOS was found, with a marked broadening of the whole spectrum, providing evidence of strong anharmonicity. This anharmonicity is corroborated by large-amplitude motions of Bi and O ions observed with neutron diffraction. These results highlight the importance of spin-phonon coupling in this material.



rate research

Read More

Hybrid organolead perovskites (HOP) have started to establish themselves in the field of photovoltaics, mainly due to their great optoelectronic properties and steadily improving solar cell efficiency. Study of the lattice dynamics is key in understanding the electron-phonon interactions at play, responsible for such properties. Here, we investigate, via neutron and Raman spectroscopies, the optical phonon spectrum of four different HOP single crystals: MAPbBr$_3$, FAPbBr$_3$, MAPbI$_3$, and $alpha$-FAPbI$_3$. Low temperature spectra reveal weakly dispersive optical phonons, at energies as low as 2-5~meV, which seem to be the origin of the limit of the charge carriers mobilities in these materials. The temperature dependence of our neutron spectra shows as well a significant anharmonic behaviour, resulting in optical phonon overdamping at temperatures as low as 80~K, questionning the validity of the quasi-particle picture for the low energy optical modes at room temperature where the solar cells operate.
We report results of an investigation of the temperature dependence of the magnon and phonon frequencies in NiO. A combination of Brillouin - Mandelstam and Raman spectroscopies allowed us to elucidate the evolution of the phonon and magnon spectral signatures from the Brillouin zone center (GHz range) to the second-order peaks from the zone boundary (THz range). The temperature-dependent behavior of the magnon and phonon bands in the NiO spectrum indicates the presence of antiferromagnetic (AF) order fluctuation or a persistent AF state at temperatures above the Neel temperature (T=523 K). Tuning the intensity of the excitation laser provides a method for disentangling the features of magnons from acoustic phonons without the application of a magnetic field. Our results are useful for interpretation of the inelastic-light scattering spectrum of NiO, and add to the knowledge of its magnon properties important for THz spintronic devices.
Recently there has been paid much attention to phenomena caused by local anharmonic vibrations of the guest ions encapsulated in polyhedral cages of materials such as pyrochlore oxides, filled skutterdites and clathrates. We theoretically investigate the optical conductivity solely due to these so-called rattling phonons in a one-dimensional anharmonic potential model. The dipole interaction of the guest ions with electric fields induces excitations expressed as transitions among vibrational states with non-equally spaced energies, resulting in a natural line broadening and a shift of the peak frequency as anharmonic effects. In the case of a single well potential, a softening of the peak frequency and an asymmetric narrowing of the line width with decreasing temperature are understood as a shift of the spectral weight to lower level transitions. On the other hand, the case of a double minima potential leads to a multi-splitting of a spectral peak in the conductivity spectrum with decreasing temperature.
Spin and lattice dynamics of CaMn7O12 ceramics were investigated using infrared, THz and inelastic neutron scattering (INS) spectroscopies in the temperature range 2 to 590 K, and, at low temperatures, in applied magnetic fields of up to 12 T. On cooling, we observed phonon splitting accompanying the structural phase transition at Tc = 450K as well as the onset of the incommensurately modulated structure at 250 K. In the two antiferromagnetic phases below T_N1 = 90K and T_N2 = 48 K, several infrared-active excitations emerge in the meV range; their frequencies correspond to the maxima in the magnon density of states obtained by INS. At the magnetic phase transitions, these modes display strong anomalies and for some of them, a transfer of dielectric strength from the higher-frequency phonons is observed. We propose that these modes are electromagnons. Remarkably, at least two of these modes remain active also in the paramagnetic phase; for this reason, we call them paraelectromagnons. In accordance with this observation, quasielastic neutron scattering revealed short-range magnetic correlations persisting within temperatures up to 500K above T_N1.
We have investigated the anisotropic thermal expansion of graphite using ab-initio calculation of lattice dynamics and anharmonicity of the phonons, which reveal that the negative thermal expansion (NTE) in the a-b plane below 600 K and very large positive thermal expansion along the c-axis up to high temperatures arise due to various phonons polarized along the c-axis. While the NTE arises from the anharmonicity of transverse phonons over a broad energy range up to 60 meV, the large positive expansion along the c-axis occurs largely due to the longitudinal optic phonon modes around 16 meV and a large linear compressibility along the c-axis. The hugely anisotropic bonding in graphite is found to be responsible for wide difference in the energy range of the transverse and longitudinal phonon modes polarized along the c-axis, which are responsible for the anomalous thermal expansion behavior. This behaviour is in contrast to other nearly isotropic hexagonal structures like water-ice, which show anomalous thermal expansion in a small temperature range arising from a narrow energy range of phonons.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا