Do you want to publish a course? Click here

Training-free Monocular 3D Event Detection System for Traffic Surveillance

67   0   0.0 ( 0 )
 Added by Lijun Yu
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

We focus on the problem of detecting traffic events in a surveillance scenario, including the detection of both vehicle actions and traffic collisions. Existing event detection systems are mostly learning-based and have achieved convincing performance when a large amount of training data is available. However, in real-world scenarios, collecting sufficient labeled training data is expensive and sometimes impossible (e.g. for traffic collision detection). Moreover, the conventional 2D representation of surveillance views is easily affected by occlusions and different camera views in nature. To deal with the aforementioned problems, in this paper, we propose a training-free monocular 3D event detection system for traffic surveillance. Our system firstly projects the vehicles into the 3D Euclidean space and estimates their kinematic states. Then we develop multiple simple yet effective ways to identify the events based on the kinematic patterns, which need no further training. Consequently, our system is robust to the occlusions and the viewpoint changes. Exclusive experiments report the superior result of our method on large-scale real-world surveillance datasets, which validates the effectiveness of our proposed system.



rate research

Read More

This paper proposes a method to extract the position and pose of vehicles in the 3D world from a single traffic camera. Most previous monocular 3D vehicle detection algorithms focused on cameras on vehicles from the perspective of a driver, and assumed known intrinsic and extrinsic calibration. On the contrary, this paper focuses on the same task using uncalibrated monocular traffic cameras. We observe that the homography between the road plane and the image plane is essential to 3D vehicle detection and the data synthesis for this task, and the homography can be estimated without the camera intrinsics and extrinsics. We conduct 3D vehicle detection by estimating the rotated bounding boxes (r-boxes) in the birds eye view (BEV) images generated from inverse perspective mapping. We propose a new regression target called textit{tailed~r-box} and a textit{dual-view} network architecture which boosts the detection accuracy on warped BEV images. Experiments show that the proposed method can generalize to new camera and environment setups despite not seeing imaged from them during training.
Monocular 3D object detection is an important task in autonomous driving. It can be easily intractable where there exists ego-car pose change w.r.t. ground plane. This is common due to the slight fluctuation of road smoothness and slope. Due to the lack of insight in industrial application, existing methods on open datasets neglect the camera pose information, which inevitably results in the detector being susceptible to camera extrinsic parameters. The perturbation of objects is very popular in most autonomous driving cases for industrial products. To this end, we propose a novel method to capture camera pose to formulate the detector free from extrinsic perturbation. Specifically, the proposed framework predicts camera extrinsic parameters by detecting vanishing point and horizon change. A converter is designed to rectify perturbative features in the latent space. By doing so, our 3D detector works independent of the extrinsic parameter variations and produces accurate results in realistic cases, e.g., potholed and uneven roads, where almost all existing monocular detectors fail to handle. Experiments demonstrate our method yields the best performance compared with the other state-of-the-arts by a large margin on both KITTI 3D and nuScenes datasets.
We propose a traffic danger recognition model that works with arbitrary traffic surveillance cameras to identify and predict car crashes. There are too many cameras to monitor manually. Therefore, we developed a model to predict and identify car crashes from surveillance cameras based on a 3D reconstruction of the road plane and prediction of trajectories. For normal traffic, it supports real-time proactive safety checks of speeds and distances between vehicles to provide insights about possible high-risk areas. We achieve good prediction and recognition of car crashes without using any labeled training data of crashes. Experiments on the BrnoCompSpeed dataset show that our model can accurately monitor the road, with mean errors of 1.80% for distance measurement, 2.77 km/h for speed measurement, 0.24 m for car position prediction, and 2.53 km/h for speed prediction.
117 - Li Wang , Li Zhang , Yi Zhu 2021
Recognizing and localizing objects in the 3D space is a crucial ability for an AI agent to perceive its surrounding environment. While significant progress has been achieved with expensive LiDAR point clouds, it poses a great challenge for 3D object detection given only a monocular image. While there exist different alternatives for tackling this problem, it is found that they are either equipped with heavy networks to fuse RGB and depth information or empirically ineffective to process millions of pseudo-LiDAR points. With in-depth examination, we realize that these limitations are rooted in inaccurate object localization. In this paper, we propose a novel and lightweight approach, dubbed {em Progressive Coordinate Transforms} (PCT) to facilitate learning coordinate representations. Specifically, a localization boosting mechanism with confidence-aware loss is introduced to progressively refine the localization prediction. In addition, semantic image representation is also exploited to compensate for the usage of patch proposals. Despite being lightweight and simple, our strategy leads to superior improvements on the KITTI and Waymo Open Dataset monocular 3D detection benchmarks. At the same time, our proposed PCT shows great generalization to most coordinate-based 3D detection frameworks. The code is available at: https://github.com/amazon-research/progressive-coordinate-transforms .
Computer vision has evolved in the last decade as a key technology for numerous applications replacing human supervision. In this paper, we present a survey on relevant visual surveillance related researches for anomaly detection in public places, focusing primarily on roads. Firstly, we revisit the surveys done in the last 10 years in this field. Since the underlying building block of a typical anomaly detection is learning, we emphasize more on learning methods applied on video scenes. We then summarize the important contributions made during last six years on anomaly detection primarily focusing on features, underlying techniques, applied scenarios and types of anomalies using single static camera. Finally, we discuss the challenges in the computer vision related anomaly detection techniques and some of the important future possibilities.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا