No Arabic abstract
Recognizing and localizing objects in the 3D space is a crucial ability for an AI agent to perceive its surrounding environment. While significant progress has been achieved with expensive LiDAR point clouds, it poses a great challenge for 3D object detection given only a monocular image. While there exist different alternatives for tackling this problem, it is found that they are either equipped with heavy networks to fuse RGB and depth information or empirically ineffective to process millions of pseudo-LiDAR points. With in-depth examination, we realize that these limitations are rooted in inaccurate object localization. In this paper, we propose a novel and lightweight approach, dubbed {em Progressive Coordinate Transforms} (PCT) to facilitate learning coordinate representations. Specifically, a localization boosting mechanism with confidence-aware loss is introduced to progressively refine the localization prediction. In addition, semantic image representation is also exploited to compensate for the usage of patch proposals. Despite being lightweight and simple, our strategy leads to superior improvements on the KITTI and Waymo Open Dataset monocular 3D detection benchmarks. At the same time, our proposed PCT shows great generalization to most coordinate-based 3D detection frameworks. The code is available at: https://github.com/amazon-research/progressive-coordinate-transforms .
Detecting and localizing objects in the real 3D space, which plays a crucial role in scene understanding, is particularly challenging given only a monocular image due to the geometric information loss during imagery projection. We propose MonoGRNet for the amodal 3D object detection from a monocular image via geometric reasoning in both the observed 2D projection and the unobserved depth dimension. MonoGRNet decomposes the monocular 3D object detection task into four sub-tasks including 2D object detection, instance-level depth estimation, projected 3D center estimation and local corner regression. The task decomposition significantly facilitates the monocular 3D object detection, allowing the target 3D bounding boxes to be efficiently predicted in a single forward pass, without using object proposals, post-processing or the computationally expensive pixel-level depth estimation utilized by previous methods. In addition, MonoGRNet flexibly adapts to both fully and weakly supervised learning, which improves the feasibility of our framework in diverse settings. Experiments are conducted on KITTI, Cityscapes and MS COCO datasets. Results demonstrate the promising performance of our framework in various scenarios.
Data augmentation is a key component of CNN based image recognition tasks like object detection. However, it is relatively less explored for 3D object detection. Many standard 2D object detection data augmentation techniques do not extend to 3D box. Extension of these data augmentations for 3D object detection requires adaptation of the 3D geometry of the input scene and synthesis of new viewpoints. This requires accurate depth information of the scene which may not be always available. In this paper, we evaluate existing 2D data augmentations and propose two novel augmentations for monocular 3D detection without a requirement for novel view synthesis. We evaluate these augmentations on the RTM3D detection model firstly due to the shorter training times . We obtain a consistent improvement by 4% in the 3D AP (@IoU=0.7) for cars, ~1.8% scores 3D AP (@IoU=0.25) for pedestrians & cyclists, over the baseline on KITTI car detection dataset. We also demonstrate a rigorous evaluation of the mAP scores by re-weighting them to take into account the class imbalance in the KITTI validation dataset.
Estimating the 3D position and orientation of objects in the environment with a single RGB camera is a critical and challenging task for low-cost urban autonomous driving and mobile robots. Most of the existing algorithms are based on the geometric constraints in 2D-3D correspondence, which stems from generic 6D object pose estimation. We first identify how the ground plane provides additional clues in depth reasoning in 3D detection in driving scenes. Based on this observation, we then improve the processing of 3D anchors and introduce a novel neural network module to fully utilize such application-specific priors in the framework of deep learning. Finally, we introduce an efficient neural network embedded with the proposed module for 3D object detection. We further verify the power of the proposed module with a neural network designed for monocular depth prediction. The two proposed networks achieve state-of-the-art performances on the KITTI 3D object detection and depth prediction benchmarks, respectively. The code will be published in https://www.github.com/Owen-Liuyuxuan/visualDet3D
Monocular 3D object detection is a key problem for autonomous vehicles, as it provides a solution with simple configuration compared to typical multi-sensor systems. The main challenge in monocular 3D detection lies in accurately predicting object depth, which must be inferred from object and scene cues due to the lack of direct range measurement. Many methods attempt to directly estimate depth to assist in 3D detection, but show limited performance as a result of depth inaccuracy. Our proposed solution, Categorical Depth Distribution Network (CaDDN), uses a predicted categorical depth distribution for each pixel to project rich contextual feature information to the appropriate depth interval in 3D space. We then use the computationally efficient birds-eye-view projection and single-stage detector to produce the final output bounding boxes. We design CaDDN as a fully differentiable end-to-end approach for joint depth estimation and object detection. We validate our approach on the KITTI 3D object detection benchmark, where we rank 1st among published monocular methods. We also provide the first monocular 3D detection results on the newly released Waymo Open Dataset. We provide a code release for CaDDN which is made available.
Estimating 3D bounding boxes from monocular images is an essential component in autonomous driving, while accurate 3D object detection from this kind of data is very challenging. In this work, by intensive diagnosis experiments, we quantify the impact introduced by each sub-task and found the `localization error is the vital factor in restricting monocular 3D detection. Besides, we also investigate the underlying reasons behind localization errors, analyze the issues they might bring, and propose three strategies. First, we revisit the misalignment between the center of the 2D bounding box and the projected center of the 3D object, which is a vital factor leading to low localization accuracy. Second, we observe that accurately localizing distant objects with existing technologies is almost impossible, while those samples will mislead the learned network. To this end, we propose to remove such samples from the training set for improving the overall performance of the detector. Lastly, we also propose a novel 3D IoU oriented loss for the size estimation of the object, which is not affected by `localization error. We conduct extensive experiments on the KITTI dataset, where the proposed method achieves real-time detection and outperforms previous methods by a large margin. The code will be made available at: https://github.com/xinzhuma/monodle.