Do you want to publish a course? Click here

Mixed-precision deep learning based on computational memory

69   0   0.0 ( 0 )
 Added by Manuel Le Gallo
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Deep neural networks (DNNs) have revolutionized the field of artificial intelligence and have achieved unprecedented success in cognitive tasks such as image and speech recognition. Training of large DNNs, however, is computationally intensive and this has motivated the search for novel computing architectures targeting this application. A computational memory unit with nanoscale resistive memory devices organized in crossbar arrays could store the synaptic weights in their conductance states and perform the expensive weighted summations in place in a non-von Neumann manner. However, updating the conductance states in a reliable manner during the weight update process is a fundamental challenge that limits the training accuracy of such an implementation. Here, we propose a mixed-precision architecture that combines a computational memory unit performing the weighted summations and imprecise conductance updates with a digital processing unit that accumulates the weight updates in high precision. A combined hardware/software training experiment of a multilayer perceptron based on the proposed architecture using a phase-change memory (PCM) array achieves 97.73% test accuracy on the task of classifying handwritten digits (based on the MNIST dataset), within 0.6% of the software baseline. The architecture is further evaluated using accurate behavioral models of PCM on a wide class of networks, namely convolutional neural networks, long-short-term-memory networks, and generative-adversarial networks. Accuracies comparable to those of floating-point implementations are achieved without being constrained by the non-idealities associated with the PCM devices. A system-level study demonstrates 173x improvement in energy efficiency of the architecture when used for training a multilayer perceptron compared with a dedicated fully digital 32-bit implementation.



rate research

Read More

In-memory computing is a promising non-von Neumann approach for making energy-efficient deep learning inference hardware. Crossbar arrays of resistive memory devices can be used to encode the network weights and perform efficient analog matrix-vector multiplications without intermediate movements of data. However, due to device variability and noise, the network needs to be trained in a specific way so that transferring the digitally trained weights to the analog resistive memory devices will not result in significant loss of accuracy. Here, we introduce a methodology to train ResNet-type convolutional neural networks that results in no appreciable accuracy loss when transferring weights to in-memory computing hardware based on phase-change memory (PCM). We also propose a compensation technique that exploits the batch normalization parameters to improve the accuracy retention over time. We achieve a classification accuracy of 93.7% on the CIFAR-10 dataset and a top-1 accuracy on the ImageNet benchmark of 71.6% after mapping the trained weights to PCM. Our hardware results on CIFAR-10 with ResNet-32 demonstrate an accuracy above 93.5% retained over a one day period, where each of the 361,722 synaptic weights of the network is programmed on just two PCM devices organized in a differential configuration.
107 - Ali Momeni , Romain Fleury 2021
Wave-based analog signal processing holds the promise of extremely fast, on-the-fly, power-efficient data processing, occurring as a wave propagates through an artificially engineered medium. Yet, due to the fundamentally weak non-linearities of traditional wave materials, such analog processors have been so far largely confined to simple linear projections such as image edge detection or matrix multiplications. Complex neuromorphic computing tasks, which inherently require strong non-linearities, have so far remained out-of-reach of wave-based solutions, with a few attempts that implemented non-linearities on the digital front, or used weak and inflexible non-linear sensors, restraining the learning performance. Here, we tackle this issue by demonstrating the relevance of Time-Floquet physics to induce a strong non-linear entanglement between signal inputs at different frequencies, enabling a power-efficient and versatile wave platform for analog extreme deep learning involving a single, uniformly modulated dielectric layer and a scattering medium. We prove the efficiency of the method for extreme learning machines and reservoir computing to solve a range of challenging learning tasks, from forecasting chaotic time series to the simultaneous classification of distinct datasets. Our results open the way for wave-based machine learning with high energy efficiency, speed, and scalability.
Memtranstor that correlates charge and magnetic flux via nonlinear magnetoelectric effects has a great potential in developing next-generation nonvolatile devices. In addition to multi-level nonvolatile memory, we demonstrate here that nonvolatile logic gates such as NOR and NAND can be implemented in a single memtranstor made of the Ni/PMN-PT/Ni heterostructure. After applying two sequent voltage pulses (X1, X2) as the logic inputs on the memtranstor, the output magnetoelectric voltage can be positive high (logic 1), positive low (logic 0), or negative (logic 0), depending on the levels of X1 and X2. The underlying physical mechanism is related to the complete or partial reversal of ferroelectric polarization controlled by inputting selective voltage pulses, which determines the magnitude and sign of the magnetoelectric voltage coefficient. The combined functions of both memory and logic could enable the memtranstor as a promising candidate for future computing systems beyond von Neumann architecture.
There is increasing demand to bring machine learning capabilities to low power devices. By integrating the computational power of machine learning with the deployment capabilities of low power devices, a number of new applications become possible. In some applications, such devices will not even have a battery, and must rely solely on energy harvesting techniques. This puts extreme constraints on the hardware, which must be energy efficient and capable of tolerating interruptions due to power outages. Here, as a representative example, we propose an in-memory support vector machine learning accelerator utilizing non-volatile spintronic memory. The combination of processing-in-memory and non-volatility provides a key advantage in that progress is effectively saved after every operation. This enables instant shut down and restart capabilities with minimal overhead. Additionally, the operations are highly energy efficient leading to low power consumption.
A unique set of characteristics are packed in emerging nonvolatile reduction-oxidation (redox)-based resistive switching memories (ReRAMs) such as their underlying stochastic switching processes alongside their intrinsic highly nonlinear current-voltage characteristic, which in addition to known nano-fabrication process variation make them a promising candidate for the next generation of low-cost, low-power, tiny and secure Physically Unclonable Functions (PUFs). This paper takes advantage of this otherwise disadvantageous ReRAM feature using a combination of novel architectural and peripheral circuitry. We present a physical one-way function, nonlinear resistive Physical Unclonable Function (nrPUF), potentially applicable in variety of cyber-physical security applications given its performance characteristics. We experimentally verified performance of Valency Change Mechanism (VCM)-based ReRAM in nano-fabricated crossbar arrays across multiple dies and runs. In addition to a massive pool of Challenge-Response Pairs (CRPs), using a combination of experimental and simulation, our proposed PUF shows a reliability of 98.67%, a uniqueness of 49.85%, a diffuseness of 49.86%, a uniformity of 47.28%, and a bit-aliasing of 47.48%.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا