Do you want to publish a course? Click here

Deterministic Algorithms for Decremental Approximate Shortest Paths: Faster and Simpler

200   0   0.0 ( 0 )
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

In the decremental $(1+epsilon)$-approximate Single-Source Shortest Path (SSSP) problem, we are given a graph $G=(V,E)$ with $n = |V|, m = |E|$, undergoing edge deletions, and a distinguished source $s in V$, and we are asked to process edge deletions efficiently and answer queries for distance estimates $widetilde{mathbf{dist}}_G(s,v)$ for each $v in V$, at any stage, such that $mathbf{dist}_G(s,v) leq widetilde{mathbf{dist}}_G(s,v) leq (1+ epsilon)mathbf{dist}_G(s,v)$. In the decremental $(1+epsilon)$-approximate All-Pairs Shortest Path (APSP) problem, we are asked to answer queries for distance estimates $widetilde{mathbf{dist}}_G(u,v)$ for every $u,v in V$. In this article, we consider the problems for undirected, unweighted graphs. We present a new emph{deterministic} algorithm for the decremental $(1+epsilon)$-approximate SSSP problem that takes total update time $O(mn^{0.5 + o(1)})$. Our algorithm improves on the currently best algorithm for dense graphs by Chechik and Bernstein [STOC 2016] with total update time $tilde{O}(n^2)$ and the best existing algorithm for sparse graphs with running time $tilde{O}(n^{1.25}sqrt{m})$ [SODA 2017] whenever $m = O(n^{1.5 - o(1)})$. In order to obtain this new algorithm, we develop several new techniques including improved decremental cover data structures for graphs, a more efficient notion of the heavy/light decomposition framework introduced by Chechik and Bernstein and the first clustering technique to maintain a dynamic emph{sparse} emulator in the deterministic setting. As a by-product, we also obtain a new simple deterministic algorithm for the decremental $(1+epsilon)$-approximate APSP problem with near-optimal total running time $tilde{O}(mn /epsilon)$ matching the time complexity of the sophisticated but rather involved algorithm by Henzinger, Forster and Nanongkai [FOCS 2013].



rate research

Read More

In the decremental single-source shortest paths (SSSP) problem, the input is an undirected graph $G=(V,E)$ with $n$ vertices and $m$ edges undergoing edge deletions, together with a fixed source vertex $sin V$. The goal is to maintain a data structure that supports shortest-path queries: given a vertex $vin V$, quickly return an (approximate) shortest path from $s$ to $v$. The decremental all-pairs shortest paths (APSP) problem is defined similarly, but now the shortest-path queries are allowed between any pair of vertices of $V$. Both problems have been studied extensively since the 80s, and algorithms with near-optimal total update time and query time have been discovered for them. Unfortunately, all these algorithms are randomized and, more importantly, they need to assume an oblivious adversary. Our first result is a deterministic algorithm for the decremental SSSP problem on weighted graphs with $O(n^{2+o(1)})$ total update time, that supports $(1+epsilon)$-approximate shortest-path queries, with query time $O(|P|cdot n^{o(1)})$, where $P$ is the returned path. This is the first $(1+epsilon)$-approximation algorithm against an adaptive adversary that supports shortest-path queries in time below $O(n)$, that breaks the $O(mn)$ total update time bound of the classical algorithm of Even and Shiloah from 1981. Our second result is a deterministic algorithm for the decremental APSP problem on unweighted graphs that achieves total update time $O(n^{2.5+delta})$, for any constant $delta>0$, supports approximate distance queries in $O(loglog n)$ time; the algorithm achieves an $O(1)$-multiplicative and $n^{o(1)}$-additive approximation on the path length. All previous algorithms for APSP either assume an oblivious adversary or have an $Omega(n^{3})$ total update time when $m=Omega(n^{2})$.
77 - Julia Chuzhoy 2021
We study the decremental All-Pairs Shortest Paths (APSP) problem in undirected edge-weighted graphs. The input to the problem is an $n$-vertex $m$-edge graph $G$ with non-negative edge lengths, that undergoes a sequence of edge deletions. The goal is to support approximate shortest-path queries: given a pair $x,y$ of vertices of $G$, return a path $P$ connecting $x$ to $y$, whose length is within factor $alpha$ of the length of the shortest $x$-$y$ path, in time $tilde O(|E(P)|)$, where $alpha$ is the approximation factor of the algorithm. APSP is one of the most basic and extensively studied dynamic graph problems. A long line of work culminated in the algorithm of [Chechik, FOCS 2018] with near optimal guarantees for the oblivious-adversary setting. Unfortunately, adaptive-adversary setting is still poorly understood. For unweighted graphs, the algorithm of [Henzinger, Krinninger and Nanongkai, FOCS 13, SICOMP 16] achieves a $(1+epsilon)$-approximation with total update time $tilde O(mn/epsilon)$; the best current total update time of $n^{2.5+O(epsilon)}$ is achieved by the deterministic algorithm of [Chuzhoy, Saranurak, SODA21], with $2^{O(1/epsilon)}$-multiplicative and $2^{O(log^{3/4}n/epsilon)}$-additive approximation. To the best of our knowledge, for arbitrary non-negative edge weights, the fastest current adaptive-update algorithm has total update time $O(n^{3}log L/epsilon)$, achieving a $(1+epsilon)$-approximation. Here, L is the ratio of longest to shortest edge lengths. Our main result is a deterministic algorithm for decremental APSP in undirected edge-weighted graphs, that, for any $Omega(1/loglog m)leq epsilon< 1$, achieves approximation factor $(log m)^{2^{O(1/epsilon)}}$, with total update time $Oleft (m^{1+O(epsilon)}cdot (log m)^{O(1/epsilon^2)}cdot log Lright )$.
Let $G = (V,E,w)$ be a weighted, digraph subject to a sequence of adversarial edge deletions. In the decremental single-source reachability problem (SSR), we are given a fixed source $s$ and the goal is to maintain a data structure that can answer path-queries $s rightarrowtail v$ for any $v in V$. In the more general single-source shortest paths (SSSP) problem the goal is to return an approximate shortest path to $v$, and in the SCC problem the goal is to maintain strongly connected components of $G$ and to answer path queries within each component. All of these problems have been very actively studied over the past two decades, but all the fast algorithms are randomized and, more significantly, they can only answer path queries if they assume a weaker model: they assume an oblivious adversary which is not adaptive and must fix the update sequence in advance. This assumption significantly limits the use of these data structures, most notably preventing them from being used as subroutines in static algorithms. All the above problems are notoriously difficult in the adaptive setting. In fact, the state-of-the-art is still the Even and Shiloach tree, which dates back all the way to 1981 and achieves total update time $O(mn)$. We present the first algorithms to break through this barrier: 1) deterministic decremental SSR/SCC with total update time $mn^{2/3 + o(1)}$ 2) deterministic decremental SSSP with total update time $n^{2+2/3+o(1)}$. To achieve these results, we develop two general techniques of broader interest for working with dynamic graphs: 1) a generalization of expander-based tools to dynamic directed graphs, and 2) a technique that we call congestion balancing and which provides a new method for maintaining flow under adversarial deletions. Using the second technique, we provide the first near-optimal algorithm for decremental bipartite matching.
We present a simple deterministic distributed algorithm that computes a $(Delta+1)$-vertex coloring in $O(log^2 Delta cdot log n)$ rounds. The algorithm can be implemented with $O(log n)$-bit messages. The algorithm can also be extended to the more general $(degree+1)$-list coloring problem. Obtaining a polylogarithmic-time deterministic algorithm for $(Delta+1)$-vertex coloring had remained a central open question in the area of distributed graph algorithms since the 1980s, until a recent network decomposition algorithm of Rozhov{n} and Ghaffari [STOC20]. The current state of the art is based on an improved variant of their decomposition, which leads to an $O(log^5 n)$-round algorithm for $(Delta+1)$-vertex coloring. Our coloring algorithm is completely different and considerably simpler and faster. It solves the coloring problem in a direct way, without using network decomposition, by gradually rounding a certain fractional color assignment until reaching an integral color assignments. Moreover, via the approach of Chang, Li, and Pettie [STOC18], this improved deterministic algorithm also leads to an improvement in the complexity of randomized algorithms for $(Delta+1)$-coloring, now reaching the bound of $O(log^3log n)$ rounds. As a further application, we also provide faster deterministic distributed algorithms for the following variants of the vertex coloring problem. In graphs of arboricity $a$, we show that a $(2+epsilon)a$-vertex coloring can be computed in $O(log^3 acdotlog n)$ rounds. We also show that for $Deltageq 3$, a $Delta$-coloring of a $Delta$-colorable graph $G$ can be computed in $O(log^2 Deltacdotlog^2 n)$ rounds.
121 - Xiaojun Dong , Yan Gu , Yihan Sun 2021
In this paper, we study the single-source shortest-path (SSSP) problem with positive edge weights, which is a notoriously hard problem in the parallel context. In practice, the $Delta$-stepping algorithm proposed by Meyer and Sanders has been widely adopted. However, $Delta$-stepping has no known worst-case bounds for general graphs. The performance of $Delta$-stepping also highly relies on the parameter $Delta$. There have also been lots of algorithms with theoretical bounds, such as Radius-stepping, but they either have no implementations available or are much slower than $Delta$-stepping in practice. We propose a stepping algorithm framework that generalizes existing algorithms such as $Delta$-stepping and Radius-stepping. The framework allows for similar analysis and implementations of all stepping algorithms. We also propose a new ADT, lazy-batched priority queue (LaB-PQ), that abstracts the semantics of the priority queue needed by the stepping algorithms. We provide two data structures for LaB-PQ, focusing on theoretical and practical efficiency, respectively. Based on the new framework and LaB-PQ, we show two new stepping algorithms, $rho$-stepping and $Delta^*$-stepping, that are simple, with non-trivial worst-case bounds, and fast in practice. The stepping algorithm framework also provides almost identical implementations for three algorithms: Bellman-Ford, $Delta^*$-stepping, and $rho$-stepping. We compare our code with four state-of-the-art implementations. On five social and web graphs, $rho$-stepping is 1.3--2.5x faster than all the existing implementations. On two road graphs, our $Delta^*$-stepping is at least 14% faster than existing implementations, while $rho$-stepping is also competitive. The almost identical implementations for stepping algorithms also allow for in-depth analyses and comparisons among the stepping algorithms in practice.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا