Do you want to publish a course? Click here

Decremental All-Pairs Shortest Paths in Deterministic Near-Linear Time

78   0   0.0 ( 0 )
 Added by Julia Chuzhoy
 Publication date 2021
and research's language is English
 Authors Julia Chuzhoy




Ask ChatGPT about the research

We study the decremental All-Pairs Shortest Paths (APSP) problem in undirected edge-weighted graphs. The input to the problem is an $n$-vertex $m$-edge graph $G$ with non-negative edge lengths, that undergoes a sequence of edge deletions. The goal is to support approximate shortest-path queries: given a pair $x,y$ of vertices of $G$, return a path $P$ connecting $x$ to $y$, whose length is within factor $alpha$ of the length of the shortest $x$-$y$ path, in time $tilde O(|E(P)|)$, where $alpha$ is the approximation factor of the algorithm. APSP is one of the most basic and extensively studied dynamic graph problems. A long line of work culminated in the algorithm of [Chechik, FOCS 2018] with near optimal guarantees for the oblivious-adversary setting. Unfortunately, adaptive-adversary setting is still poorly understood. For unweighted graphs, the algorithm of [Henzinger, Krinninger and Nanongkai, FOCS 13, SICOMP 16] achieves a $(1+epsilon)$-approximation with total update time $tilde O(mn/epsilon)$; the best current total update time of $n^{2.5+O(epsilon)}$ is achieved by the deterministic algorithm of [Chuzhoy, Saranurak, SODA21], with $2^{O(1/epsilon)}$-multiplicative and $2^{O(log^{3/4}n/epsilon)}$-additive approximation. To the best of our knowledge, for arbitrary non-negative edge weights, the fastest current adaptive-update algorithm has total update time $O(n^{3}log L/epsilon)$, achieving a $(1+epsilon)$-approximation. Here, L is the ratio of longest to shortest edge lengths. Our main result is a deterministic algorithm for decremental APSP in undirected edge-weighted graphs, that, for any $Omega(1/loglog m)leq epsilon< 1$, achieves approximation factor $(log m)^{2^{O(1/epsilon)}}$, with total update time $Oleft (m^{1+O(epsilon)}cdot (log m)^{O(1/epsilon^2)}cdot log Lright )$.



rate research

Read More

In the decremental $(1+epsilon)$-approximate Single-Source Shortest Path (SSSP) problem, we are given a graph $G=(V,E)$ with $n = |V|, m = |E|$, undergoing edge deletions, and a distinguished source $s in V$, and we are asked to process edge deletions efficiently and answer queries for distance estimates $widetilde{mathbf{dist}}_G(s,v)$ for each $v in V$, at any stage, such that $mathbf{dist}_G(s,v) leq widetilde{mathbf{dist}}_G(s,v) leq (1+ epsilon)mathbf{dist}_G(s,v)$. In the decremental $(1+epsilon)$-approximate All-Pairs Shortest Path (APSP) problem, we are asked to answer queries for distance estimates $widetilde{mathbf{dist}}_G(u,v)$ for every $u,v in V$. In this article, we consider the problems for undirected, unweighted graphs. We present a new emph{deterministic} algorithm for the decremental $(1+epsilon)$-approximate SSSP problem that takes total update time $O(mn^{0.5 + o(1)})$. Our algorithm improves on the currently best algorithm for dense graphs by Chechik and Bernstein [STOC 2016] with total update time $tilde{O}(n^2)$ and the best existing algorithm for sparse graphs with running time $tilde{O}(n^{1.25}sqrt{m})$ [SODA 2017] whenever $m = O(n^{1.5 - o(1)})$. In order to obtain this new algorithm, we develop several new techniques including improved decremental cover data structures for graphs, a more efficient notion of the heavy/light decomposition framework introduced by Chechik and Bernstein and the first clustering technique to maintain a dynamic emph{sparse} emulator in the deterministic setting. As a by-product, we also obtain a new simple deterministic algorithm for the decremental $(1+epsilon)$-approximate APSP problem with near-optimal total running time $tilde{O}(mn /epsilon)$ matching the time complexity of the sophisticated but rather involved algorithm by Henzinger, Forster and Nanongkai [FOCS 2013].
In the decremental single-source shortest paths (SSSP) problem, the input is an undirected graph $G=(V,E)$ with $n$ vertices and $m$ edges undergoing edge deletions, together with a fixed source vertex $sin V$. The goal is to maintain a data structure that supports shortest-path queries: given a vertex $vin V$, quickly return an (approximate) shortest path from $s$ to $v$. The decremental all-pairs shortest paths (APSP) problem is defined similarly, but now the shortest-path queries are allowed between any pair of vertices of $V$. Both problems have been studied extensively since the 80s, and algorithms with near-optimal total update time and query time have been discovered for them. Unfortunately, all these algorithms are randomized and, more importantly, they need to assume an oblivious adversary. Our first result is a deterministic algorithm for the decremental SSSP problem on weighted graphs with $O(n^{2+o(1)})$ total update time, that supports $(1+epsilon)$-approximate shortest-path queries, with query time $O(|P|cdot n^{o(1)})$, where $P$ is the returned path. This is the first $(1+epsilon)$-approximation algorithm against an adaptive adversary that supports shortest-path queries in time below $O(n)$, that breaks the $O(mn)$ total update time bound of the classical algorithm of Even and Shiloah from 1981. Our second result is a deterministic algorithm for the decremental APSP problem on unweighted graphs that achieves total update time $O(n^{2.5+delta})$, for any constant $delta>0$, supports approximate distance queries in $O(loglog n)$ time; the algorithm achieves an $O(1)$-multiplicative and $n^{o(1)}$-additive approximation on the path length. All previous algorithms for APSP either assume an oblivious adversary or have an $Omega(n^{3})$ total update time when $m=Omega(n^{2})$.
Let $G = (V,E,w)$ be a weighted, digraph subject to a sequence of adversarial edge deletions. In the decremental single-source reachability problem (SSR), we are given a fixed source $s$ and the goal is to maintain a data structure that can answer path-queries $s rightarrowtail v$ for any $v in V$. In the more general single-source shortest paths (SSSP) problem the goal is to return an approximate shortest path to $v$, and in the SCC problem the goal is to maintain strongly connected components of $G$ and to answer path queries within each component. All of these problems have been very actively studied over the past two decades, but all the fast algorithms are randomized and, more significantly, they can only answer path queries if they assume a weaker model: they assume an oblivious adversary which is not adaptive and must fix the update sequence in advance. This assumption significantly limits the use of these data structures, most notably preventing them from being used as subroutines in static algorithms. All the above problems are notoriously difficult in the adaptive setting. In fact, the state-of-the-art is still the Even and Shiloach tree, which dates back all the way to 1981 and achieves total update time $O(mn)$. We present the first algorithms to break through this barrier: 1) deterministic decremental SSR/SCC with total update time $mn^{2/3 + o(1)}$ 2) deterministic decremental SSSP with total update time $n^{2+2/3+o(1)}$. To achieve these results, we develop two general techniques of broader interest for working with dynamic graphs: 1) a generalization of expander-based tools to dynamic directed graphs, and 2) a technique that we call congestion balancing and which provides a new method for maintaining flow under adversarial deletions. Using the second technique, we provide the first near-optimal algorithm for decremental bipartite matching.
Given a directed weighted graph $G=(V,E)$ undergoing vertex insertions emph{and} deletions, the All-Pairs Shortest Paths (APSP) problem asks to maintain a data structure that processes updates efficiently and returns after each update the distance matrix to the current version of $G$. In two breakthrough results, Italiano and Demetrescu [STOC 03] presented an algorithm that requires $tilde{O}(n^2)$ emph{amortized} update time, and Thorup showed in [STOC 05] that emph{worst-case} update time $tilde{O}(n^{2+3/4})$ can be achieved. In this article, we make substantial progress on the problem. We present the following new results: (1) We present the first deterministic data structure that breaks the $tilde{O}(n^{2+3/4})$ worst-case update time bound by Thorup which has been standing for almost 15 years. We improve the worst-case update time to $tilde{O}(n^{2+5/7}) = tilde{O}(n^{2.71..})$ and to $tilde{O}(n^{2+3/5}) = tilde{O}(n^{2.6})$ for unweighted graphs. (2) We present a simple deterministic algorithm with $tilde{O}(n^{2+3/4})$ worst-case update time ($tilde{O}(n^{2+2/3})$ for unweighted graphs), and a simple Las-Vegas algorithm with worst-case update time $tilde{O}(n^{2+2/3})$ ($tilde{O}(n^{2 + 1/2})$ for unweighted graphs) that works against a non-oblivious adversary. Both data structures require space $tilde{O}(n^2)$. These are the first exact dynamic algorithms with truly-subcubic update time emph{and} space usage. This makes significant progress on an open question posed in multiple articles [COCOON01, STOC 03, ICALP04, Encyclopedia of Algorithms 08] and is critical to algorithms in practice [TALG 06] where large space usage is prohibitive. Moreover, they match the worst-case update time of the best previous algorithms and the second algorithm improves upon a Monte-Carlo algorithm in a weaker adversary model with the same running time [SODA 17].
In the decremental single-source shortest paths problem, the goal is to maintain distances from a fixed source $s$ to every vertex $v$ in an $m$-edge graph undergoing edge deletions. In this paper, we conclude a long line of research on this problem by showing a near-optimal deterministic data structure that maintains $(1+epsilon)$-approximate distance estimates and runs in $m^{1+o(1)}$ total update time. Our result, in particular, removes the oblivious adversary assumption required by the previous breakthrough result by Henzinger et al. [FOCS14], which leads to our second result: the first almost-linear time algorithm for $(1-epsilon)$-approximate min-cost flow in undirected graphs where capacities and costs can be taken over edges and vertices. Previously, algorithms for max flow with vertex capacities, or min-cost flow with any capacities required super-linear time. Our result essentially completes the picture for approximate flow in undirected graphs. The key technique of the first result is a novel framework that allows us to treat low-diameter graphs like expanders. This allows us to harness expander properties while bypassing shortcomings of expander decomposition, which almost all previous expander-based algorithms needed to deal with. For the second result, we break the notorious flow-decomposition barrier from the multiplicative-weight-update framework using randomization.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا