No Arabic abstract
We consider a finite-state Discrete-Time Markov Chain (DTMC) source that can be sampled for detecting the events when the DTMC transits to a new state. Our goal is to study the trade-off between sampling frequency and staleness in detecting the events. We argue that, for the problem at hand, using Age of Information (AoI) for quantifying the staleness of a sample is conservative and therefore, introduce textit{age penalty} for this purpose. We study two optimization problems: minimize average age penalty subject to an average sampling frequency constraint, and minimize average sampling frequency subject to an average age penalty constraint; both are Constrained Markov Decision Problems. We solve them using linear programming approach and compute Markov policies that are optimal among all causal policies. Our numerical results demonstrate that the computed Markov policies not only outperform optimal periodic sampling policies, but also achieve sampling frequencies close to or lower than that of an optimal clairvoyant (non-causal) sampling policy, if a small age penalty is allowed.
Repair of multiple partially failed cache nodes is studied in a distributed wireless content caching system, where $r$ out of a total of $n$ cache nodes lose part of their cached data. Broadcast repair of failed cache contents at the network edge is studied; that is, the surviving cache nodes transmit broadcast messages to the failed ones, which are then used, together with the surviving data in their local cache memories, to recover the lost content. The trade-off between the storage capacity and the repair bandwidth is derived. It is shown that utilizing the broadcast nature of the wireless medium and the surviving cache contents at partially failed nodes significantly reduces the required repair bandwidth per node.
We revisit the task of quantum state redistribution in the one-shot setting, and design a protocol for this task with communication cost in terms of a measure of distance from quantum Markov chains. More precisely, the distance is defined in terms of quantum max-relative entropy and quantum hypothesis testing entropy. Our result is the first to operationally connect quantum state redistribution and quantum Markov chains, and can be interpreted as an operational interpretation for a possible one-shot analogue of quantum conditional mutual information. The communication cost of our protocol is lower than all previously known ones and asymptotically achieves the well-known rate of quantum conditional mutual information. Thus, our work takes a step towards the important open question of near-optimal characterization of the one-shot quantum state redistribution.
Recently, several array radar structures combined with sub-Nyquist techniques and corresponding algorithms have been extensively studied. Carrier frequency and direction-of-arrival (DOA) estimations of multiple narrow-band signals received by array radars at the sub-Nyquist rates are considered in this paper. We propose a new sub-Nyquist array radar architecture (a binary array radar separately connected to a multi-coset structure with M branches) and an efficient joint estimation algorithm which can match frequencies up with corresponding DOAs. We further come up with a delay pattern augmenting method, by which the capability of the number of identifiable signals can increase from M-1 to Q-1 (Q is extended degrees of freedom). We further conclude that the minimum total sampling rate 2MB is sufficient to identify $ {K leq Q-1}$ narrow-band signals of maximum bandwidth $B$ inside. The effectiveness and performance of the estimation algorithm together with the augmenting method have been verified by simulations.
Sorted l1 regularization has been incorporated into many methods for solving high-dimensional statistical estimation problems, including the SLOPE estimator in linear regression. In this paper, we study how this relatively new regularization technique improves variable selection by characterizing the optimal SLOPE trade-off between the false discovery proportion (FDP) and true positive proportion (TPP) or, equivalently, between measures of type I error and power. Assuming a regime of linear sparsity and working under Gaussian random designs, we obtain an upper bound on the optimal trade-off for SLOPE, showing its capability of breaking the Donoho-Tanner power limit. To put it into perspective, this limit is the highest possible power that the Lasso, which is perhaps the most popular l1-based method, can achieve even with arbitrarily strong effect sizes. Next, we derive a tight lower bound that delineates the fundamental limit of sorted l1 regularization in optimally trading the FDP off for the TPP. Finally, we show that on any problem instance, SLOPE with a certain regularization sequence outperforms the Lasso, in the sense of having a smaller FDP, larger TPP and smaller l2 estimation risk simultaneously. Our proofs are based on a novel technique that reduces a variational calculus problem to a class of infinite-dimensional convex optimization problems and a very recent result from approximate message passing theory.
As numerous machine learning and other algorithms increase in complexity and data requirements, distributed computing becomes necessary to satisfy the growing computational and storage demands, because it enables parallel execution of smaller tasks that make up a large computing job. However, random fluctuations in task service times lead to straggling tasks with long execution times. Redundancy, in the form of task replication and erasure coding, provides diversity that allows a job to be completed when only a subset of redundant tasks is executed, thus removing the dependency on the straggling tasks. In situations of constrained resources (here a fixed number of parallel servers), increasing redundancy reduces the available resources for parallelism. In this paper, we characterize the diversity vs. parallelism trade-off and identify the optimal strategy, among replication, coding and splitting, which minimizes the expected job completion time. We consider three common service time distributions and establish three models that describe scaling of these distributions with the task size. We find that different distributions with different scaling models operate optimally at different levels of redundancy, and thus may require very different code rates.