Do you want to publish a course? Click here

Jumptime unraveling of Markovian open quantum systems

350   0   0.0 ( 0 )
 Added by Clemens Gneiting
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We introduce jumptime unraveling as a distinct method to analyze quantum jump trajectories and the associated open/continuously monitored quantum systems. In contrast to the standard unraveling of quantum master equations, where the stochastically evolving quantum trajectories are ensemble-averaged at specific times, we average quantum trajectories at specific jump counts. The resulting quantum state then follows a discrete, deterministic evolution equation, with time replaced by the jump count. We show that, for systems with finite-dimensional state space, this evolution equation represents a trace-preserving quantum dynamical map if and only if the underlying quantum master equation does not exhibit dark states. In the presence of dark states, on the other hand, the state may decay and/or the jumptime evolution eventually terminate entirely. We elaborate the operational protocol to observe jumptime-averaged quantum states, and we illustrate the jumptime evolution with the examples of a two-level system undergoing amplitude damping or dephasing, a damped harmonic oscillator, and a free particle exposed to collisional decoherence.



rate research

Read More

Perturbation theory (PT) is a powerful and commonly used tool in the investigation of closed quantum systems. In the context of open quantum systems, PT based on the Markovian quantum master equation is much less developed. The investigation of open systems mostly relies on exact diagonalization of the Liouville superoperator or quantum trajectories. In this approach, the system size is rather limited by current computational capabilities. Analogous to closed-system PT, we develop a PT suitable for open quantum systems. This proposed method is useful in the analytical understanding of open systems as well as in the numerical calculation of system properties, which would otherwise be impractical.
Non-Markovian reduced dynamics of an open system is investigated. In the case the initial state of the reservoir is the vacuum state, an approximation is introduced which makes possible to construct a reduced dynamics which is completely positive.
We derive a sequence of measures whose corresponding Jacobi matrices have special properties and a general mapping of an open quantum system onto 1D semi infinite chains with only nearest neighbour interactions. Then we proceed to use the sequence of measures and the properties of the Jacobi matrices to derive an expression for the spectral density describing the open quantum system when an increasing number of degrees of freedom in the environment have been embedded into the system. Finally, we derive convergence theorems for these residual spectral densities.
We propose an efficient numerical method to compute configuration averages of observables in disordered open quantum systems whose dynamics can be unraveled via stochastic trajectories. We prove that the optimal sampling of trajectories and disorder configurations is simply achieved by considering one random disorder configuration for each individual trajectory. As a first application, we exploit the present method to the study the role of disorder on the physics of the driven-dissipative Bose-Hubbard model in two different regimes: (i) for strong interactions, we explore the dissipative physics of fermionized bosons in disordered one-dimensional chains; (ii) for weak interactions, we investigate the role of on-site inhomogeneities on a first-order dissipative phase transition in a two-dimensional square lattice.
We extend the non-Markovian quantum state diffusion (QSD) equation to open quantum systems which exhibit multi-channel coupling to a harmonic oscillator reservoir. Open quantum systems which have multi-channel reservoir coupling are those in which canonical transformation of reservoir modes cannot reduce the number of reservoir operators appearing in the interaction Hamiltonian to one. We show that the non-Markovian QSD equation for multi-channel reservoir coupling can, in some cases, lead to an exact master equation which we derive. We then derive the exact master equation for the three-level system in a vee-type configuration which has multi-channel reservoir coupling and give the analytical solution. Finally, we examine the evolution of the three-level vee-type system with generalized Ornstein-Uhlenbeck reservoir correlations numerically.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا