No Arabic abstract
We propose an efficient numerical method to compute configuration averages of observables in disordered open quantum systems whose dynamics can be unraveled via stochastic trajectories. We prove that the optimal sampling of trajectories and disorder configurations is simply achieved by considering one random disorder configuration for each individual trajectory. As a first application, we exploit the present method to the study the role of disorder on the physics of the driven-dissipative Bose-Hubbard model in two different regimes: (i) for strong interactions, we explore the dissipative physics of fermionized bosons in disordered one-dimensional chains; (ii) for weak interactions, we investigate the role of on-site inhomogeneities on a first-order dissipative phase transition in a two-dimensional square lattice.
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories. The latter emerge in the unraveling of Markovian quantum master equations and/or in continuous quantum measurements. Ensemble-averaging quantum trajectories at the occurrence of quantum jumps, i.e., the jumptimes, gives rise to a discrete, deterministic evolution which is highly sensitive to the presence of dark states. We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians, which is also reflected by the corresponding jumptime dynamics. The topological character of the latter can then be observed, for instance, in the transport behavior, exposing an infinite hierarchy of topological phase transitions. We develop our theory for one- and two-dimensional two-band Hamiltonians, and show that the topological behavior is directly manifest for chiral, PT, or time reversal-symmetric Hamiltonians.
The dynamics of interacting quantum systems in the presence of disorder is studied and an exact representation for disorder-averaged quantities via Ito stochastic calculus is obtained. The stochastic integral representation affords many advantages, including amenability to analytic approximation, applicability to interacting systems, and compatibility with existing tensor network methods. The integral may be expanded to produce a series of approximations, the first of which already includes all diffusive corrections and, further, is manifestly completely positive. The addition of fluctuations leads to a convergent series of systematic corrections. As examples, expressions for the density of states, spectral form factor, and out-of-time-order correlators for the Anderson model are obtained.
We study the dynamics of nonlinear photonic lattices driven by two-photon parametric processes. By means of matrix-product-state based calculations, we show that a quantum many-body state with long-range hidden order can be generated from the vacuum. This order resembles that characterizing the Haldane insulator. A possible explanation highlighting the role of the symmetry of the drive, and the effect of photon loss are discussed. An implementation based in superconducting circuits is proposed and analyzed
We introduce jumptime unraveling as a distinct method to analyze quantum jump trajectories and the associated open/continuously monitored quantum systems. In contrast to the standard unraveling of quantum master equations, where the stochastically evolving quantum trajectories are ensemble-averaged at specific times, we average quantum trajectories at specific jump counts. The resulting quantum state then follows a discrete, deterministic evolution equation, with time replaced by the jump count. We show that, for systems with finite-dimensional state space, this evolution equation represents a trace-preserving quantum dynamical map if and only if the underlying quantum master equation does not exhibit dark states. In the presence of dark states, on the other hand, the state may decay and/or the jumptime evolution eventually terminate entirely. We elaborate the operational protocol to observe jumptime-averaged quantum states, and we illustrate the jumptime evolution with the examples of a two-level system undergoing amplitude damping or dephasing, a damped harmonic oscillator, and a free particle exposed to collisional decoherence.
We implement several symplectic integrators, which are based on two part splitting, for studying the chaotic behavior of one- and two-dimensional disordered Klein-Gordon lattices with many degrees of freedom and investigate their numerical performance. For this purpose, we perform extensive numerical simulations by considering many different initial energy excitations and following the evolution of the created wave packets in the various dynamical regimes exhibited by these models. We compare the efficiency of the considered integrators by checking their ability to correctly reproduce several features of the wave packets propagation, like the characteristics of the created energy distribution and the time evolution of the systems maximum Lyapunov exponent estimator. Among the tested integrators the fourth order $ABA864$ scheme cite{BCFLMM13} showed the best performance as it needed the least CPU time for capturing the correct dynamical behavior of all considered cases when a moderate accuracy in conserving the systems total energy value was required. Among the higher order schemes used to achieve a better accuracy in the energy conservation, the sixth order scheme $s11ABA82_6$ exhibited the best performance.