No Arabic abstract
Perturbation theory (PT) is a powerful and commonly used tool in the investigation of closed quantum systems. In the context of open quantum systems, PT based on the Markovian quantum master equation is much less developed. The investigation of open systems mostly relies on exact diagonalization of the Liouville superoperator or quantum trajectories. In this approach, the system size is rather limited by current computational capabilities. Analogous to closed-system PT, we develop a PT suitable for open quantum systems. This proposed method is useful in the analytical understanding of open systems as well as in the numerical calculation of system properties, which would otherwise be impractical.
We treat several key stochastic equations for non-Markovian open quantum system dynamics and present a formalism for finding solutions to them via canonical perturbation theory, without making the Born-Markov or rotating wave approximations (RWA). This includes master equations of the (asymptotically) stationary, periodic, and time-nonlocal type. We provide proofs on the validity and meaningfulness of the late-time perturbative master equation and on the preservation of complete positivity despite a general lack of Lindblad form. More specifically, we show how the algebraic generators satisfy the theorem of Lindblad and Gorini, Kossakowski and Sudarshan, even though the dynamical generators do not. These proofs ensure the mathematical viability and physical soundness of solutions to non-Markovian processes. Within the same formalism we also expand upon known results for non-Markovian corrections to the quantum regression theorem. Several directions where these results can be usefully applied to are also described, including the analysis of near-resonant systems where the RWA is inapplicable and the calculation of the reduced equilibrium state of open systems.
We develop a systematic and efficient approach for numerically solving the non-Markovian quantum state diffusion equations for open quantum systems coupled to an environment up to arbitrary orders of noises or coupling strengths. As an important application, we consider a real-time simulation of a spin-boson model in a strong coupling regime that is difficult to deal with using conventional methods. We show that the non-Markovian stochastic Schr{o}dinger equation can be efficiently implemented as a real--time simulation for this model, so as to give an accurate description of spin-boson dynamics beyond the rotating-wave approximation.
We derive a quantum master equation to treat quantum systems interacting with multiple reservoirs. The formalism is used to investigate atomic transport across a variety of lattice configurations. We demonstrate how the behavior of an electronic diode, a field-effect transistor, and a bipolar junction transistor can be realized with neutral, ultracold atoms trapped in optical lattices. An analysis of the current fluctuations is provided for the case of the atomtronic diode. Finally, we show that it is possible to demonstrate AND logic gate behavior in an optical lattice.
We introduce jumptime unraveling as a distinct method to analyze quantum jump trajectories and the associated open/continuously monitored quantum systems. In contrast to the standard unraveling of quantum master equations, where the stochastically evolving quantum trajectories are ensemble-averaged at specific times, we average quantum trajectories at specific jump counts. The resulting quantum state then follows a discrete, deterministic evolution equation, with time replaced by the jump count. We show that, for systems with finite-dimensional state space, this evolution equation represents a trace-preserving quantum dynamical map if and only if the underlying quantum master equation does not exhibit dark states. In the presence of dark states, on the other hand, the state may decay and/or the jumptime evolution eventually terminate entirely. We elaborate the operational protocol to observe jumptime-averaged quantum states, and we illustrate the jumptime evolution with the examples of a two-level system undergoing amplitude damping or dephasing, a damped harmonic oscillator, and a free particle exposed to collisional decoherence.
We consider stochastic and open quantum systems with a finite number of states, where a stochastic transition between two specific states is monitored by a detector. The long-time counting statistics of the observed realizations of the transition, parametrized by cumulants, is the only available information about the system. We present an analytical method for reconstructing generators of the time evolution of the system compatible with the observations. The practicality of the reconstruction method is demonstrated by the examples of a laser-driven atom and the kinetics of enzyme-catalyzed reactions. Moreover, we propose cumulant-based criteria for testing the non-classicality and non-Markovianity of the time evolution, and lower bounds for the system dimension. Our analytical results rely on the close connection between the cumulants of the counting statistics and the characteristic polynomial of the generator, which takes the role of the cumulant generating function.