Do you want to publish a course? Click here

PhaseLink: A Deep Learning Approach to Seismic Phase Association

72   0   0.0 ( 0 )
 Added by Zachary Ross
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Seismic phase association is a fundamental task in seismology that pertains to linking together phase detections on different sensors that originate from a common earthquake. It is widely employed to detect earthquakes on permanent and temporary seismic networks, and underlies most seismicity catalogs produced around the world. This task can be challenging because the number of sources is unknown, events frequently overlap in time, or can occur simultaneously in different parts of a network. We present PhaseLink, a framework based on recent advances in deep learning for grid-free earthquake phase association. Our approach learns to link phases together that share a common origin, and is trained entirely on tens of millions of synthetic sequences of P- and S-wave arrival times generated using a simple 1D velocity model. Our approach is simple to implement for any tectonic regime, suitable for real-time processing, and can naturally incorporate errors in arrival time picks. Rather than tuning a set of ad hoc hyperparameters to improve performance, PhaseLink can be improved by simply adding examples of problematic cases to the training dataset. We demonstrate the state-of-the-art performance of PhaseLink on a challenging recent sequence from southern California, and synthesized sequences from Japan designed to test the point at which the method fails. For the examined datasets, PhaseLink can precisely associate P- and S-picks to events that are separated by ~12 seconds in origin time. This approach is expected to improve the resolution of seismicity catalogs, add stability to real-time seismic monitoring, and streamline automated processing of large seismic datasets.



rate research

Read More

Traditional seismic processing workflows (SPW) are expensive, requiring over a year of human and computational effort. Deep learning (DL) based data-driven seismic workflows (DSPW) hold the potential to reduce these timelines to a few minutes. Raw seismic data (terabytes) and required subsurface prediction (gigabytes) are enormous. This large-scale, spatially irregular time-series data poses seismic data ingestion (SDI) as an unconventional yet fundamental problem in DSPW. Current DL research is limited to small-scale simplified synthetic datasets as they treat seismic data like images and process them with convolution networks. Real seismic data, however, is at least 5D. Applying 5D convolutions to this scale is computationally prohibitive. Moreover, raw seismic data is highly unstructured and hence inherently non-image like. We propose a fundamental shift to move away from convolutions and introduce SESDI: Set Embedding based SDI approach. SESDI first breaks down the mammoth task of large-scale prediction into an efficient compact auxiliary task. SESDI gracefully incorporates irregularities in data with its novel model architecture. We believe SESDI is the first successful demonstration of end-to-end learning on real seismic data. SESDI achieves SSIM of over 0.8 on velocity inversion task on real proprietary data from the Gulf of Mexico and outperforms the state-of-the-art U-Net model on synthetic datasets.
108 - Tiantong Wang , Daniel Trugman , 2019
Detecting earthquake events from seismic time series has proved itself a challenging task. Manual detection can be expensive and tedious due to the intensive labor and large scale data set. In recent years, automatic detection methods based on machine learning have been developed to improve accuracy and efficiency. However, the accuracy of those methods relies on a sufficient amount of high-quality training data, which itself can be expensive to obtain due to the requirement of domain knowledge and subject matter expertise. This paper is to resolve this dilemma by answering two questions: (1) provided with a limited number of reliable labels, can we use them to generate more synthetic labels; (2) Can we use those synthetic labels to improve the detectability? Among all the existing generative models, the generative adversarial network (GAN) shows its supreme capability in generating high-quality synthetic samples in multiple domains. We designed our model based on GAN. In particular, we studied several different network structures. By comparing the generated results, our GAN-based generative model yields the highest quality. We further combine the dataset with synthetic samples generated by our generative model and show that the detectability of our earthquake classification model is significantly improved than the one trained without augmenting the training set.
220 - Ali Siahkoohi , Gabrio Rizzuti , 2020
Uncertainty quantification is essential when dealing with ill-conditioned inverse problems due to the inherent nonuniqueness of the solution. Bayesian approaches allow us to determine how likely an estimation of the unknown parameters is via formulating the posterior distribution. Unfortunately, it is often not possible to formulate a prior distribution that precisely encodes our prior knowledge about the unknown. Furthermore, adherence to handcrafted priors may greatly bias the outcome of the Bayesian analysis. To address this issue, we propose to use the functional form of a randomly initialized convolutional neural network as an implicit structured prior, which is shown to promote natural images and excludes images with unnatural noise. In order to incorporate the model uncertainty into the final estimate, we sample the posterior distribution using stochastic gradient Langevin dynamics and perform Bayesian model averaging on the obtained samples. Our synthetic numerical experiment verifies that deep priors combined with Bayesian model averaging are able to partially circumvent imaging artifacts and reduce the risk of overfitting in the presence of extreme noise. Finally, we present pointwise variance of the estimates as a measure of uncertainty, which coincides with regions that are more difficult to image.
Marginalized importance sampling (MIS), which measures the density ratio between the state-action occupancy of a target policy and that of a sampling distribution, is a promising approach for off-policy evaluation. However, current state-of-the-art MIS methods rely on complex optimization tricks and succeed mostly on simple toy problems. We bridge the gap between MIS and deep reinforcement learning by observing that the density ratio can be computed from the successor representation of the target policy. The successor representation can be trained through deep reinforcement learning methodology and decouples the reward optimization from the dynamics of the environment, making the resulting algorithm stable and applicable to high-dimensional domains. We evaluate the empirical performance of our approach on a variety of challenging Atari and MuJoCo environments.
To optimally monitor earthquake-generating processes, seismologists have sought to lower detection sensitivities ever since instrumental seismic networks were started about a century ago. Recently, it has become possible to search continuous waveform archives for replicas of previously recorded events (template matching), which has led to at least an order of magnitude increase in the number of detected earthquakes and greatly sharpened our view of geological structures. Earthquake catalogs produced in this fashion, however, are heavily biased in that they are completely blind to events for which no templates are available, such as in previously quiet regions or for very large magnitude events. Here we show that with deep learning we can overcome such biases without sacrificing detection sensitivity. We trained a convolutional neural network (ConvNet) on the vast hand-labeled data archives of the Southern California Seismic Network to detect seismic body wave phases. We show that the ConvNet is extremely sensitive and robust in detecting phases, even when masked by high background noise, and when the ConvNet is applied to new data that is not represented in the training set (in particular, very large magnitude events). This generalized phase detection (GPD) framework will significantly improve earthquake monitoring and catalogs, which form the underlying basis for a wide range of basic and applied seismological research.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا