Do you want to publish a course? Click here

Discovery of the soft electronic modes of the trimeron order in magnetite

93   0   0.0 ( 0 )
 Added by Carina Belvin
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Verwey transition in magnetite (Fe$_3$O$_4$) is the first metal-insulator transition ever observed and involves a concomitant structural rearrangement and charge-orbital ordering. Due to the complex interplay of these intertwined degrees of freedom, a complete characterization of the low-temperature phase of magnetite and the mechanism driving the transition have long remained elusive. It was demonstrated in recent years that the fundamental building blocks of the charge-ordered structure are three-site small polarons called trimerons. However, electronic collective modes of this trimeron order have not been detected to date, and thus an understanding of the dynamics of the Verwey transition from an electronic point of view is still lacking. Here, we discover spectroscopic signatures of the low-energy electronic excitations of the trimeron network using terahertz light. By driving these modes coherently with an ultrashort laser pulse, we reveal their critical softening and hence demonstrate their direct involvement in the Verwey transition. These findings represent the first observation of soft modes in magnetite and shed new light on the cooperative mechanism at the origin of its exotic ground state.



rate research

Read More

395 - P. Piekarz , D. Legut , E. Baldini 2020
Using density functional theory, we study the lattice dynamical properties of magnetite (Fe$_3$O$_4$) in the high-temperature cubic and low-temperature monoclinic phases. The calculated phonon dispersion curves and phonon density of states are compared with the available experimental data obtained by inelastic neutron, inelastic x-ray, and nuclear inelastic scattering. We find a very good agreement between the theoretical and experimental results for the monoclinic $Cc$ structure revealing the strong coupling between charge-orbital (trimeron) order and specific phonon modes. For the cubic phase, clear discrepancies arise which, remarkably, can be understood assuming that the strong trimeron-phonon coupling can be extended above the Verwey transition, with lattice dynamics influenced by the short-range trimeron order instead of the average cubic structure. Our results establish the validity of trimerons (and trimeron-phonon coupling) in explaining the physics of magnetite much beyond their original formulation.
In many high temperature superconductors, small orthorhombic distortions of the lattice structure result in surprisingly large symmetry breaking of the electronic states and macroscopic properties, an effect often referred to as nematicity. To directly study the impact of symmetry-breaking lattice distortions on the electronic states, using low-temperature scanning tunnelling microscopy we image at the atomic scale the influence of strain-tuned lattice distortions on the correlated electronic states in the iron-based superconductor LiFeAs, a material which in its ground state is tetragonal, with four-fold ($C_4$) symmetry. Our experiments uncover a new strain-stabilised modulated phase which exhibits a smectic order in LiFeAs, an electronic state which not only breaks rotational symmetry but also reduces translational symmetry. We follow the evolution of the superconducting gap from the unstrained material with $C_4$ symmetry through the new nematic phase with two-fold ($C_2$) symmetry and charge-density-wave order to a state where superconductivity is completely suppressed.
95 - P. Piekarz , K. Parlinski , 2006
By combining {it ab initio} results for the electronic structure and phonon spectrum with the group theory, we establish the origin of the Verwey transition in Fe$_3$O$_4$. Two primary order parameters with $X_3$ and $Delta_5$ symmetries are identified. They induce the phase transformation from the high-temperature cubic to the low-temperature monoclinic structure. The on-site Coulomb interaction $U$ between 3d electrons at Fe ions plays a crucial role in this transition -- it amplifies the coupling of phonons to conduction electrons and thus opens a gap at the Fermi energy. {it Published in Phys. Rev. Lett. {bf 97}, 156402 (2006).}
Magnetite, Fe$_3$O$_4$, displays a highly complex low temperature crystal structure that may be charge and orbitally ordered. Many of the recent experimental claims of such ordering rely on resonant soft x-ray diffraction at the oxygen K and iron L edges. We have re-examined this system and undertaken soft x-ray diffraction experiments on a high-quality single crystal. Contrary to previous claims in the literature, we show that the intensity observed at the Bragg forbidden (001/2)$_c$ reflection can be explained purely in terms of the low-temperature structural displacements around the resonant atoms. This does not necessarily mean that magnetite is not charge or orbitally ordered, but rather that the present sensitivity of resonant soft x-ray experiments does not allow conclusive demonstration of such ordering.
We studied the (001/2) diffraction peak in the low-temperature phase of magnetite (Fe3O4) using resonant soft x-ray diffraction (RSXD) at the Fe-L2,3 and O-K resonance. We studied both molecular-beam-epitaxy (MBE) grown thin films and in-situ cleaved single crystals. From the comparison we have been able to determine quantitatively the contribution of intrinsic absorption effects, thereby arriving at a consistent result for the (001/2) diffraction peak spectrum. Our data also allow for the identification of extrinsic effects, e.g. for a detailed modeling of the spectra in case a dead surface layer is present that is only absorbing photons but does not contribute to the scattering signal.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا