Do you want to publish a course? Click here

Trimeron-phonon coupling in magnetite

396   0   0.0 ( 0 )
 Added by Przemyslaw Piekarz
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Using density functional theory, we study the lattice dynamical properties of magnetite (Fe$_3$O$_4$) in the high-temperature cubic and low-temperature monoclinic phases. The calculated phonon dispersion curves and phonon density of states are compared with the available experimental data obtained by inelastic neutron, inelastic x-ray, and nuclear inelastic scattering. We find a very good agreement between the theoretical and experimental results for the monoclinic $Cc$ structure revealing the strong coupling between charge-orbital (trimeron) order and specific phonon modes. For the cubic phase, clear discrepancies arise which, remarkably, can be understood assuming that the strong trimeron-phonon coupling can be extended above the Verwey transition, with lattice dynamics influenced by the short-range trimeron order instead of the average cubic structure. Our results establish the validity of trimerons (and trimeron-phonon coupling) in explaining the physics of magnetite much beyond their original formulation.



rate research

Read More

We present the results of inelastic x-ray scattering for magnetite and analyze the energies and spectral widths of the phonon modes with different symmetries in a broad range of temperature 125<T<293 K. The phonon modes with X_4 and Delta_5 symmetries broaden in a nonlinear way with decreasing temperature when the Verwey transition is approached. It is found that the maxima of phonon widths occur away from high-symmetry points which indicates the incommensurate character of critical fluctuations. Strong phonon anharmonicity induced by electron-phonon coupling is discovered within ab initio calculations which take into account local Coulomb interactions at Fe ions. It (i) explains observed anomalous phonon broadening, and (ii) demonstrates that the Verwey transition is a cooperative phenomenon which involves a wide spectrum of phonons coupled to charge fluctuations condensing in the low-symmetry phase.
The Verwey transition in magnetite (Fe$_3$O$_4$) is the first metal-insulator transition ever observed and involves a concomitant structural rearrangement and charge-orbital ordering. Due to the complex interplay of these intertwined degrees of freedom, a complete characterization of the low-temperature phase of magnetite and the mechanism driving the transition have long remained elusive. It was demonstrated in recent years that the fundamental building blocks of the charge-ordered structure are three-site small polarons called trimerons. However, electronic collective modes of this trimeron order have not been detected to date, and thus an understanding of the dynamics of the Verwey transition from an electronic point of view is still lacking. Here, we discover spectroscopic signatures of the low-energy electronic excitations of the trimeron network using terahertz light. By driving these modes coherently with an ultrashort laser pulse, we reveal their critical softening and hence demonstrate their direct involvement in the Verwey transition. These findings represent the first observation of soft modes in magnetite and shed new light on the cooperative mechanism at the origin of its exotic ground state.
Understanding the physics of strongly correlated electronic systems has been a central issue in condensed matter physics for decades. In transition metal oxides, strong correlations characteristic of narrow $d$ bands is at the origin of such remarkable properties as the Mott gap opening, enhanced effective mass, and anomalous vibronic coupling, to mention a few. SrVO$_3$, with V$^{4+}$ in a $3d^1$ electronic configuration is the simplest example of a 3D correlated metallic electronic system. Here, we focus on the observation of a (roughly) quadratic temperature dependence of the inverse electron mobility of this seemingly simple system, which is an intriguing property shared by other metallic oxides. The systematic analysis of electronic transport in SrVO$_3$ thin films discloses the limitations of the simplest picture of e-e correlations in a Fermi liquid; instead, we show that the quasi-2D topology of the Fermi surface and a strong electron-phonon coupling, contributing to dress carriers with a phonon cloud, play a pivotal role on the reported electron spectroscopic, optical, thermodynamic and transport data. The picture that emerges is not restricted to SrVO$_3$ but can be shared with other $3d$ and $4d$ metallic oxides.
We report high-resolution inelastic x-ray measurements of the soft phonon mode in the charge-density-wave compound TiSe$_2$. We observe a complete softening of a transverse optic phonon at the L point, i.e. q = (0.5, 0, 0.5), at T ~ T_{CDW}. Renormalized phonon energies are observed over a large wavevector range $(0.3, 0, 0.5) le mathbf{q} le (0.5, 0, 0.5)$. Detailed ab-initio calculations for the electronic and lattice dynamical properties of TiSe2 are in quantitative agreement with experimental frequencies for the phonon branch involving the soft mode. The observed broad range of renormalized phonon frequencies is directly related to a broad peak in the electronic susceptibility stabilizing the charge-density-wave ordered state. Our analysis demonstrates that a conventional electron-phonon coupling mechanism can explain a structural instability and the charge-density-wave order in TiSe_2 although other mechanisms might further boost the transition temperature.
We utilize near-infrared femtosecond pulses to investigate coherent phonon oscillations of Ca2RuO4. The coherent Ag phonon mode of the lowest frequency changes abruptly not only its amplitude but also the oscillation-phase as the spin order develops. In addition, the phonon mode shows a redshift entering the magnetically ordered state, which indicates a spin-phonon coupling in the system. Density functional theory calculations reveal that the Ag oscillations result in octahedral tilting distortions, which are exactly in sync with the lattice deformation driven by the magnetic ordering. We suggest that the structural distortions by the spin-phonon coupling can induce the unusual oscillation-phase shift between impulsive and displacive type oscillations.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا