Do you want to publish a course? Click here

The impact of anisotropy on ITER scenarios

112   0   0.0 ( 0 )
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report on the impact of anisotropy to tokamak plasma configuration and stability. Our focus is on analysis of the impact of anisotropy on ITER pre-fusion power operation 5~MA, $B=1.8$~T ICRH scenarios. To model ITER scenarios remapping tools are developed to distinguish the impact of pressure anisotropy from the change in magnetic geometry caused by an anisotropy-modified current profile. The remappings iterate the anisotropy-modified current profile to produce the same $q$ profile with matched thermal energy. The analysis is a step toward equilibria that are kinetically self-consistent for a prescribed scenario. We find characteristic detachment of flux surfaces from pressure surfaces, and an outboard (inboard) shift of peak density for $T_{parallel}>T_perp$ ( $T_{parallel}<T_perp$). Differences in the poloidal current profile are evident, albeit not as pronounced as for the spherical tokamak. We find that the incompressional continuum is largely unchanged in the presence of anisotropy, and the mode structure of gap modes is largely unchanged. The compressional branch however exhibits significant differences in the continuum. We report on the implication of these modifications.



rate research

Read More

Neutral beam injection or ion cyclotron resonance heating induces pressure anisotropy. The axisymmetric plasma equilibrium code HELENA has been upgraded to include anisotropy and toroidal flow. With both analytical and numerical methods, we have studied the determinant factors in anisotropic equilibria and their impact on flux surfaces, magnetic axis shift, the displacement of pressures and density contours from flux surface. With $p_parallel/p_perp approx 1.5$, $p_perp$ can vary 20% on $s=0.5$ flux surface, in a MAST like equilibrium. We have also re-evaluated the widely applied approximation to anisotropy in which $p^*=(p_parallel + p_perp)/2$, the average of parallel and perpendicular pressure, is taken as the approximate isotropic pressure. We find the reconstructions of the same MAST discharge with $p_parallel/p_perp approx 1.25$, using isotropic and anisotropic model respectively, to have a 3% difference in toroidal field but a 66% difference in poloidal current.
The free-streaming plus recycling model (FSRM) has recently been developed to understand and predict tungsten gross erosion rates from the divertor during edge localized modes (ELMs). In this work, the FSRM was tested against experimental measurements of W sputtering during ELMs, conducted via fast WI spectroscopy. Good agreement is observed using a variety of controlling techniques, including gas puffing, neutral beam heating, and plasma shaping to modify the pedestal stability boundary and thus the ELM behavior. ELM mitigation by pellet pacing was observed to strongly reduce W sputtering by flushing C impurities from the pedestal and reducing the divertor target electron temperature. No reduction of W sputtering was observed during the application of resonant magnetic perturbations (RMPs), in contrast to the prediction of the FSRM. Potential sources of this discrepancy are discussed. Finally, the framework of the FSRM is utilized to predict intra-ELM W sputtering rates in ITER. It is concluded that W erosion during ELMs in ITER will be caused mainly by free-streaming fuel ions, but free-streaming seeded impurities (N or Ne) may increase the erosion rate significantly if present in the pedestal at even the 1% level. Impurity recycling is not expected to cause significant W erosion in ITER due to the very low target electron temperature.
135 - G. Papp , T. Fulop , T. Feher 2013
This paper investigates the effect of the ITER-like wall (ILW) on runaway electron (RE) generation through a comparative study of similar slow argon injection JET disruptions, performed with different wall materials. In the carbon wall case, a runaway electron plateau is observed, while in the ITER-like wall case, the current quench is slower and the runaway current is negligibly small. The aim of the paper is to shed light on the reason for these differences by detailed numerical modelling to study which factors affected the RE formation. The post-disruption current profile is calculated by a one-dimensional model of electric field, temperature and runaway current taking into account the impurity injection. Scans of various impurity contents are performed and agreement with the experimental scenarios is obtained for reasonable argon- and wall impurity contents. Our modelling shows that the reason for the changed RE dynamics is a complex, combined effect of the differences in plasma parameter profiles, the radiation characteristics of beryllium and carbon, and the difference of the injected argon amount. These together lead to a significantly higher Dreicer generation rate in the carbon wall case, which is less prone to be suppressed by RE loss mechanisms. The results indicate that the differences are greatly reduced above ~50% argon content, suggesting that significant RE current is expected in future massive gas injection experiments on both JET and ITER.
For understanding carbon erosion and redeposition in nuclear fusion devices, it is important to understand the transport and chemical break-up of hydrocarbon molecules in edge plasmas, often diagnosed by emission of the CH A^2Delta - X^2Pi Gero band around 430 nm. The CH A-level can be excited either by electron-impact or by dissociative recombination (D.R.) of hydrocarbon ions. These processes were included in the 3D Monte Carlo impurity transport code ERO. A series of methane injection experiments was performed in the high-density, low-temperature linear plasma generator Pilot-PSI, and simulated emission intensity profiles were benchmarked against these experiments. It was confirmed that excitation by D.R. dominates at T_e < 1.5 eV. The results indicate that the fraction of D.R. events that lead to a CH radical in the A-level and consequent photon emission is at least 10%. Additionally, quenching of the excited CH radicals by electron impact de-excitation was included in the modeling. This quenching is shown to be significant: depending on the electron density, it reduces the effective CH emission by a factor of 1.4 at n_e=1.3*10^20 m^-3, to 2.8 at n_e=9.3*10^20 m^-3. Its inclusion significantly improved agreement between experiment and modeling.
We study the the impact of Run2 LHC data on general Composite Higgs scenarios, where non-linear effects, mixing with additional scalars and new fermionic degrees of freedom could simultaneously contribute to the modification of Higgs properties. We obtain new experimental limits on the scale of compositeness, the mixing with singlets and doublets with the Higgs, and the mass and mixing angle of top-partners. We also show that for scenarios where new fermionic degrees of freedom are involved in electroweak symmetry breaking, there is an interesting interplay among Higgs coupling measurements, boosted Higgs properties, SMEFT global analyses, and direct searches for single- and double-production of vector-like quarks.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا