Do you want to publish a course? Click here

The effect of ITER-like wall on runaway electron generation in JET

150   0   0.0 ( 0 )
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

This paper investigates the effect of the ITER-like wall (ILW) on runaway electron (RE) generation through a comparative study of similar slow argon injection JET disruptions, performed with different wall materials. In the carbon wall case, a runaway electron plateau is observed, while in the ITER-like wall case, the current quench is slower and the runaway current is negligibly small. The aim of the paper is to shed light on the reason for these differences by detailed numerical modelling to study which factors affected the RE formation. The post-disruption current profile is calculated by a one-dimensional model of electric field, temperature and runaway current taking into account the impurity injection. Scans of various impurity contents are performed and agreement with the experimental scenarios is obtained for reasonable argon- and wall impurity contents. Our modelling shows that the reason for the changed RE dynamics is a complex, combined effect of the differences in plasma parameter profiles, the radiation characteristics of beryllium and carbon, and the difference of the injected argon amount. These together lead to a significantly higher Dreicer generation rate in the carbon wall case, which is less prone to be suppressed by RE loss mechanisms. The results indicate that the differences are greatly reduced above ~50% argon content, suggesting that significant RE current is expected in future massive gas injection experiments on both JET and ITER.



rate research

Read More

The replacement of the JET carbon wall (C-wall) by a Be/W ITER-like wall (ILW) has affected the plasma energy confinement. To investigate this, experiments have been performed with both the C-wall and ILW to vary the heating power over a wide range for plasmas with different shapes.
Mitigation of runaway electrons is one of the outstanding issues for the reliable operation of ITER and other large tokamaks, and accurate estimates for the expected runaway-electron energies and current are needed. Previously, linearized tools (which assume the runaway population to be small) have been used to study the runaway dynamics, but these tools are not valid in the cases of most interest, i.e. when the runaway population becomes substantial. We study runaway-electron formation in a post-disruption ITER plasma using the newly developed non-linear code NORSE, and describe a feedback mechanism by which a transition to electron slide-away can be induced at field strengths significantly lower than previously expected. If the electric field is actively imposed using the control system, the entire electron population is quickly converted to runaways in the scenario considered. We find the time until the feedback mechanism sets in to be highly dependent on the details of the mechanisms removing heat from the thermal electron population.
135 - E. Nardon , A. Matsuyama , D. Hu 2020
The possibility of using Shattered Pellet Injection(s) after the Thermal Quench phase of an ITER disruption in order to deplete Runaway Electron (RE) seeds before they can substantially avalanche is studied. Analytical and numerical estimates of the required injection rate for shards to penetrate into the forming RE beam and stop REs are given. How much material could be assimilated before the Current Quench (CQ) becomes too short is also estimated. It appears that, if Hydrogen pellets were used, the required number of pellets to be injected during the CQ would be prohibitive, at least considering the present design of the ITER Disruption Mitigation System (DMS). For Neon or Argon, the required number of pellets, although large, might be within reach of the ITER DMS, but the assimilated fraction would have to be very small. Other materials may be better suited but would require a modification of the ITER DMS.
This paper compares the gyrokinetic instabilities and transport in two representative JET pedestals, one (pulse 78697) from the JET configuration with a carbon wall (C) and another (pulse 92432) from after the installation of JETs ITER-like Wall (ILW). The discharges were selected for a comparison of JET-ILW and JET-C discharges with good confinement at high current (3 MA, corresponding also to low $rho_*$) and retain the distinguishing features of JET-C and JET-ILW, notably, decreased pedestal top temperature for JET-ILW. A comparison of the profiles and heating power reveals a stark qualitative difference between the discharges: the JET-ILW pulse (92432) requires twice the heating power, at a gas rate of $1.9 times 10^{22}e/s$, to sustain roughly half the temperature gradient of the JET-C pulse (78697), operated at zero gas rate. This points to heat transport as a central component of the dynamics limiting the JET-ILW pedestal and reinforces the following emerging JET-ILW pedestal transport paradigm, which is proposed for further examination by both theory and experiment. ILW conditions modify the density pedestal in ways that decrease the normalized pedestal density gradient $a/L_n$, often via an outward shift of the density pedestal. This is attributable to some combination of direct metal wall effects and the need for increased fueling to mitigate tungsten contamination. The modification to the density profile increases $eta = L_n/L_T$ , thereby producing more robust ion temperature gradient (ITG) and electron temperature gradient driven instability. The decreased pedestal gradients for JET-ILW (92432) also result in a strongly reduced $E times B$ shear rate, further enhancing the ion scale turbulence. Collectively, these effects limit the pedestal temperature and demand more heating power to achieve good pedestal performance.
Recently, it has been shown that a vertical displacement event (VDE) can occur in ITER even when the walls are perfect conductors, as a consequence of the current quench [A. H. Boozer, Physics of Plasmas 26 114501 (2019)]. We used the extended-MHD code M3D-C1 with an ITER-like equilibrium and induced a current quench to explore cold VDEs in the limit of perfectly conducting walls, using different wall geometries. In the particular case of a rectangular wall with the side walls far away from the plasma, we obtained very good agreement with the analytical model developed by Boozer that considers a top/bottom flat-plates wall. We show that the solution in which the plasma stays at the initial equilibrium position is improved when bringing the side walls closer to the plasma. When using the ITER first wall in the limit of a perfect conductor, the plasma stays stable at the initial equilibrium position far beyond the value predicted by the flat-plates wall limit. On the other hand, when considering the limit in which the inner shell of the ITER vacuum vessel is acting as a perfect conductor, the plasma is displaced during the current quench but the edge safety factor stays above $2$ longer in the current decay compared to the flat-plates wall limit. In all the simulated cases, the vertical displacement is found to be strongly dependent on the plasma current, in agreement with a similar finding in the flat-plates wall limit, showing an important difference with usual VDEs in which the current quench is not a necessary condition.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا