Do you want to publish a course? Click here

Dissociative recombination and electron-impact de-excitation in CH photon emission under ITER divertor-relevant plasma conditions

103   0   0.0 ( 0 )
 Added by Gijs van Swaaij
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

For understanding carbon erosion and redeposition in nuclear fusion devices, it is important to understand the transport and chemical break-up of hydrocarbon molecules in edge plasmas, often diagnosed by emission of the CH A^2Delta - X^2Pi Gero band around 430 nm. The CH A-level can be excited either by electron-impact or by dissociative recombination (D.R.) of hydrocarbon ions. These processes were included in the 3D Monte Carlo impurity transport code ERO. A series of methane injection experiments was performed in the high-density, low-temperature linear plasma generator Pilot-PSI, and simulated emission intensity profiles were benchmarked against these experiments. It was confirmed that excitation by D.R. dominates at T_e < 1.5 eV. The results indicate that the fraction of D.R. events that lead to a CH radical in the A-level and consequent photon emission is at least 10%. Additionally, quenching of the excited CH radicals by electron impact de-excitation was included in the modeling. This quenching is shown to be significant: depending on the electron density, it reduces the effective CH emission by a factor of 1.4 at n_e=1.3*10^20 m^-3, to 2.8 at n_e=9.3*10^20 m^-3. Its inclusion significantly improved agreement between experiment and modeling.



rate research

Read More

Cross sections are presented for dissociative recombination and electron-impact vibrational excitation of the ArH+ molecular ion at electron energies appropriate for the interstellar environment. The R-matrix method is employed to determine the molecular structure data, i.e. the position and width of the resonance states. The cross sections and the corresponding Maxwellian rate coefficients are computed using a method based on the Multichannel Quantum Defect Theory. The main result of the paper is the very low dissociative recombination rate found at temperatures below 1000K. This is in agreement with the previous upper limit measurement in merged beams and offers a realistic explanation to the presence of ArH+ in exotic interstellar conditions.
The free-streaming plus recycling model (FSRM) has recently been developed to understand and predict tungsten gross erosion rates from the divertor during edge localized modes (ELMs). In this work, the FSRM was tested against experimental measurements of W sputtering during ELMs, conducted via fast WI spectroscopy. Good agreement is observed using a variety of controlling techniques, including gas puffing, neutral beam heating, and plasma shaping to modify the pedestal stability boundary and thus the ELM behavior. ELM mitigation by pellet pacing was observed to strongly reduce W sputtering by flushing C impurities from the pedestal and reducing the divertor target electron temperature. No reduction of W sputtering was observed during the application of resonant magnetic perturbations (RMPs), in contrast to the prediction of the FSRM. Potential sources of this discrepancy are discussed. Finally, the framework of the FSRM is utilized to predict intra-ELM W sputtering rates in ITER. It is concluded that W erosion during ELMs in ITER will be caused mainly by free-streaming fuel ions, but free-streaming seeded impurities (N or Ne) may increase the erosion rate significantly if present in the pedestal at even the 1% level. Impurity recycling is not expected to cause significant W erosion in ITER due to the very low target electron temperature.
The expansion dynamics of hot electron-positron-photon plasma droplets is dealt with within relativistic hydrodynamics. Such droplets, envisaged to be created in future experiments by irradiating thin foils with counter-propagating ultra-intense laser beams, are sources of flashes of gamma radiation. Warm electron-positron plasma droplets may be identified and characterized by a broadened 511 keV line.
A theoretical investigation of the dissociative excitation by electron impact on the NO molecule is presented, aiming to make up for the lack of data for this process in the literature. A full set of vibrationally-resolved cross sections and corresponding rate coefficients are calculated using the Local-Complex-Potential approach and five resonant states of NO^-.
128 - C.S. Chang , S. Ku , A. Loarte 2017
The XGC1 edge gyrokinetic code is used for a high fidelity prediction for the width of the heat-flux to divertor plates in attached plasma condition. The simulation results are validated against the empirical scaling $lambda_q propto B_P^{-gamma}$ obtained from present tokamak devices, where $lambda_q$ is the divertor heat-flux width mapped to the outboard midplane and $gamma_q=1.19$ as defined by T. Eich et al. [Nucl. Fusion 53 (2013) 093031], and $B_P$ is the magnitude of the poloidal magnetic field at outboard midplane separatrix surface. This empirical scaling predicts $lambda_q leq 1mm$ when extrapolated to ITER, which would require operation with very high separatrix densities $(n_{sep}/n_{Greenwald} > 0.6)$ in the Q=10 scenario to achieve semi-detached plasma operation and high radiative fractions leading to acceptable divertor power fluxes. XGC1 predicts, however, that $lambda_q$ for ITER is over 5 mm, suggesting that operation in the ITER Q=10 scenario with acceptable divertor power loads could be obtained over a wider range of plasma separatrix densities and radiative fractions. The physics reason behind this difference is, according to the XGC1 results, that while the ion magnetic drift contribution to the divertor heat-flux width is wider in the present tokamaks, the turbulent electron contribution is wider in ITER. A high current C-Mod discharge is found to be in a mixed regime: While the heat-flux width by the ion neoclassical magnetic drift is still wider than the turbulent electron heat-flux width, the heat-flux magnitude is dominated by the narrower electron heat-flux.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا