In this work we consider an example of a linear time-degenerate Schrodinger operator. We show that with the appropriate assumptions the operator satisfies a Kato smoothing effect. We also show that the solutions to the nonlinear initial value problems involving this operator and polynomial derivative nonlinearities are locally well-posed and their solutions also satisfy the same smoothing estimates as the linear solutions.
We obtain new local smoothing estimates for the Euclidean wave equation on $mathbb{R}^{n}$, by replacing the space of initial data by a Hardy space for Fourier integral operators. This improves the bounds in the local smoothing conjecture for $pgeq 2(n+1)/(n-1)$, and complements them for $2<p<2(n+1)/(n-1)$. These estimates are invariant under application of Fourier integral operators.
We consider properties of second-order operators $H = -sum^d_{i,j=1} partial_i , c_{ij} , partial_j$ on $Ri^d$ with bounded real symmetric measurable coefficients. We assume that $C = (c_{ij}) geq 0$ almost everywhere, but allow for the possibility that $C$ is singular. We associate with $H$ a canonical self-adjoint viscosity operator $H_0$ and examine properties of the viscosity semigroup $S^{(0)}$ generated by $H_0$. The semigroup extends to a positive contraction semigroup on the $L_p$-spaces with $p in [1,infty]$. We establish that it conserves probability, satisfies $L_2$~off-diagonal bounds and that the wave equation associated with $H_0$ has finite speed of propagation. Nevertheless $S^{(0)}$ is not always strictly positive because separation of the system can occur even for subelliptic operators. This demonstrates that subelliptic semigroups are not ergodic in general and their kernels are neither strictly positive nor Holder continuous. In particular one can construct examples for which both upper and lower Gaussian bounds fail even with coefficients in $C^{2-varepsilon}(Ri^d)$ with $varepsilon > 0$.
It is shown that the theory of real symmetric second-order elliptic operators in divergence form on $Ri^d$ can be formulated in terms of a regular strongly local Dirichlet form irregardless of the order of degeneracy. The behaviour of the corresponding evolution semigroup $S_t$ can be described in terms of a function $(A,B) mapsto d(A ;B)in[0,infty]$ over pairs of measurable subsets of $Ri^d$. Then [ |(phi_A,S_tphi_B)|leq e^{-d(A;B)^2(4t)^{-1}}|phi_A|_2|phi_B|_2 ] for all $t>0$ and all $phi_Ain L_2(A)$, $phi_Bin L_2(B)$. Moreover $S_tL_2(A)subseteq L_2(A)$ for all $t>0$ if and only if $d(A ;A^c)=infty$ where $A^c$ denotes the complement of $A$.
We consider optimization problems for cost functionals which depend on the negative spectrum of Schrodinger operators of the form $-Delta+V(x)$, where $V$ is a potential, with prescribed compact support, which has to be determined. Under suitable assumptions the existence of an optimal potential is shown. This can be applied to interesting cases such as costs functions involving finitely many negative eigenvalues.
We investigate the dispersive properties of solutions to the Schrodinger equation with a weakly decaying radial potential on cones. If the potential has sufficient polynomial decay at infinity, then we show that the Schrodinger flow on each eigenspace of the link manifold satisfies a weighted $L^1to L^infty$ dispersive estimate. In odd dimensions, the decay rate we compute is consistent with that of the Schrodinger equation in a Euclidean space of the same dimension, but the spatial weights reflect the more complicated regularity issues in frequency that we face in the form of the spectral measure. In even dimensions, we prove a similar estimate, but with a loss of $t^{1/2}$ compared to the sharp Euclidean estimate.