No Arabic abstract
We obtain new local smoothing estimates for the Euclidean wave equation on $mathbb{R}^{n}$, by replacing the space of initial data by a Hardy space for Fourier integral operators. This improves the bounds in the local smoothing conjecture for $pgeq 2(n+1)/(n-1)$, and complements them for $2<p<2(n+1)/(n-1)$. These estimates are invariant under application of Fourier integral operators.
We prove mapping properties of pseudodifferential operators with rough symbols on Hardy spaces for Fourier integral operators. The symbols $a(x,eta)$ are elements of $C^{r}_{*}S^{m}_{1,delta}$ classes that have limited regularity in the $x$ variable. We show that the associated pseudodifferential operator $a(x,D)$ maps between Sobolev spaces $mathcal{H}^{s,p}_{FIO}(mathbb{R}^{n})$ and $mathcal{H}^{t,p}_{FIO}(mathbb{R}^{n})$ over the Hardy space for Fourier integral operators $mathcal{H}^{p}_{FIO}(mathbb{R}^{n})$. Our main result implies that for $m=0$, $delta=1/2$ and $r>n-1$, $a(x,D)$ acts boundedly on $mathcal{H}^{p}_{FIO}(mathbb{R}^{n})$ for all $pin(1,infty)$.
We define a scale of Hardy spaces $mathcal{H}^{p}_{FIO}(mathbb{R}^{n})$, $pin[1,infty]$, that are invariant under suitable Fourier integral operators of order zero. This builds on work by Smith for $p=1$. We also introduce a notion of off-singularity decay for kernels on the cosphere bundle of $mathbb{R}^{n}$, and we combine this with wave packet transforms and tent spaces over the cosphere bundle to develop a full Hardy space theory for oscillatory integral operators. In the process we extend the known results about $L^{p}$-boundedness of Fourier integral operators, from local boundedness to global boundedness for a larger class of symbols.
We obtain improved bounds for pseudodifferential operators with rough symbols on Hardy spaces for Fourier integral operators. The symbols $a(x,eta)$ are elements of $C^{r}_{*}S^{m}_{1,delta}$ classes that have limited regularity in the $x$ variable. We show that the associated pseudodifferential operator $a(x,D)$ maps between Sobolev spaces $mathcal{H}^{p,s}_{FIO}(mathbb{R}^{n})$ and $mathcal{H}^{p,t}_{FIO}(mathbb{R}^{n})$ over the Hardy space for Fourier integral operators $mathcal{H}^{p}_{FIO}(mathbb{R}^{n})$. Our main result is that for all $r>0$, $m=0$ and $delta=1/2$, there exists an interval of $p$ around $2$ such that $a(x,D)$ acts boundedly on $mathcal{H}^{p}_{FIO}(mathbb{R}^{n})$.
The Hardy spaces for Fourier integral operators $mathcal{H}_{FIO}^{p}(mathbb{R}^{n})$, for $1leq pleq infty$, were introduced by Smith in cite{Smith98a} and Hassell et al. in cite{HaPoRo18}. In this article, we give several equivalent characterizations of $mathcal{H}_{FIO}^{1}(mathbb{R}^{n})$, for example in terms of Littlewood--Paley g functions and maximal functions. This answers a question from [Rozendaal,2019]. We also give several applications of the characterizations.
By using, among other things, the Fourier analysis techniques on hyperbolic and symmetric spaces, we establish the Hardy-Sobolev-Mazya inequalities for higher order derivatives on half spaces. The proof relies on a Hardy-Littlewood-Sobolev inequality on hyperbolic spaces which is of its independent interest. We also give an alternative proof of Benguria, Frank and Loss work concerning the sharp constant in the Hardy-Sobolev-Mazya inequality in the three dimensional upper half space. Finally, we show the sharp constant in the Hardy-Sobolev-Mazya inequality for bi-Laplacian in the upper half space of dimension five coincides with the Sobolev constant.