Do you want to publish a course? Click here

Local smoothing and Hardy spaces for Fourier integral operators

71   0   0.0 ( 0 )
 Added by Jan Rozendaal
 Publication date 2021
  fields
and research's language is English
 Authors Jan Rozendaal




Ask ChatGPT about the research

We obtain new local smoothing estimates for the Euclidean wave equation on $mathbb{R}^{n}$, by replacing the space of initial data by a Hardy space for Fourier integral operators. This improves the bounds in the local smoothing conjecture for $pgeq 2(n+1)/(n-1)$, and complements them for $2<p<2(n+1)/(n-1)$. These estimates are invariant under application of Fourier integral operators.

rate research

Read More

66 - Jan Rozendaal 2020
We prove mapping properties of pseudodifferential operators with rough symbols on Hardy spaces for Fourier integral operators. The symbols $a(x,eta)$ are elements of $C^{r}_{*}S^{m}_{1,delta}$ classes that have limited regularity in the $x$ variable. We show that the associated pseudodifferential operator $a(x,D)$ maps between Sobolev spaces $mathcal{H}^{s,p}_{FIO}(mathbb{R}^{n})$ and $mathcal{H}^{t,p}_{FIO}(mathbb{R}^{n})$ over the Hardy space for Fourier integral operators $mathcal{H}^{p}_{FIO}(mathbb{R}^{n})$. Our main result implies that for $m=0$, $delta=1/2$ and $r>n-1$, $a(x,D)$ acts boundedly on $mathcal{H}^{p}_{FIO}(mathbb{R}^{n})$ for all $pin(1,infty)$.
We define a scale of Hardy spaces $mathcal{H}^{p}_{FIO}(mathbb{R}^{n})$, $pin[1,infty]$, that are invariant under suitable Fourier integral operators of order zero. This builds on work by Smith for $p=1$. We also introduce a notion of off-singularity decay for kernels on the cosphere bundle of $mathbb{R}^{n}$, and we combine this with wave packet transforms and tent spaces over the cosphere bundle to develop a full Hardy space theory for oscillatory integral operators. In the process we extend the known results about $L^{p}$-boundedness of Fourier integral operators, from local boundedness to global boundedness for a larger class of symbols.
66 - Jan Rozendaal 2021
We obtain improved bounds for pseudodifferential operators with rough symbols on Hardy spaces for Fourier integral operators. The symbols $a(x,eta)$ are elements of $C^{r}_{*}S^{m}_{1,delta}$ classes that have limited regularity in the $x$ variable. We show that the associated pseudodifferential operator $a(x,D)$ maps between Sobolev spaces $mathcal{H}^{p,s}_{FIO}(mathbb{R}^{n})$ and $mathcal{H}^{p,t}_{FIO}(mathbb{R}^{n})$ over the Hardy space for Fourier integral operators $mathcal{H}^{p}_{FIO}(mathbb{R}^{n})$. Our main result is that for all $r>0$, $m=0$ and $delta=1/2$, there exists an interval of $p$ around $2$ such that $a(x,D)$ acts boundedly on $mathcal{H}^{p}_{FIO}(mathbb{R}^{n})$.
The Hardy spaces for Fourier integral operators $mathcal{H}_{FIO}^{p}(mathbb{R}^{n})$, for $1leq pleq infty$, were introduced by Smith in cite{Smith98a} and Hassell et al. in cite{HaPoRo18}. In this article, we give several equivalent characterizations of $mathcal{H}_{FIO}^{1}(mathbb{R}^{n})$, for example in terms of Littlewood--Paley g functions and maximal functions. This answers a question from [Rozendaal,2019]. We also give several applications of the characterizations.
219 - Guozhen Lu , Qiaohua Yang 2017
By using, among other things, the Fourier analysis techniques on hyperbolic and symmetric spaces, we establish the Hardy-Sobolev-Mazya inequalities for higher order derivatives on half spaces. The proof relies on a Hardy-Littlewood-Sobolev inequality on hyperbolic spaces which is of its independent interest. We also give an alternative proof of Benguria, Frank and Loss work concerning the sharp constant in the Hardy-Sobolev-Mazya inequality in the three dimensional upper half space. Finally, we show the sharp constant in the Hardy-Sobolev-Mazya inequality for bi-Laplacian in the upper half space of dimension five coincides with the Sobolev constant.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا