Do you want to publish a course? Click here

Emerging Disentanglement in Auto-Encoder Based Unsupervised Image Content Transfer

89   0   0.0 ( 0 )
 Added by Sagie Benaim
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

We study the problem of learning to map, in an unsupervised way, between domains A and B, such that the samples b in B contain all the information that exists in samples a in A and some additional information. For example, ignoring occlusions, B can be people with glasses, A people without, and the glasses, would be the added information. When mapping a sample a from the first domain to the other domain, the missing information is replicated from an independent reference sample b in B. Thus, in the above example, we can create, for every person without glasses a version with the glasses observed in any face image. Our solution employs a single two-pathway encoder and a single decoder for both domains. The common part of the two domains and the separate part are encoded as two vectors, and the separate part is fixed at zero for domain A. The loss terms are minimal and involve reconstruction losses for the two domains and a domain confusion term. Our analysis shows that under mild assumptions, this architecture, which is much simpler than the literature guided-translation methods, is enough to ensure disentanglement between the two domains. We present convincing results in a few visual domains, such as no-glasses to glasses, adding facial hair based on a reference image, etc.



rate research

Read More

Terahertz (THz) sensing is a promising imaging technology for a wide variety of different applications. Extracting the interpretable and physically meaningful parameters for such applications, however, requires solving an inverse problem in which a model function determined by these parameters needs to be fitted to the measured data. Since the underlying optimization problem is nonconvex and very costly to solve, we propose learning the prediction of suitable parameters from the measured data directly. More precisely, we develop a model-based autoencoder in which the encoder network predicts suitable parameters and the decoder is fixed to a physically meaningful model function, such that we can train the encoding network in an unsupervised way. We illustrate numerically that the resulting network is more than 140 times faster than classical optimization techniques while making predictions with only slightly higher objective values. Using such predictions as starting points of local optimization techniques allows us to converge to better local minima about twice as fast as optimization without the network-based initialization.
130 - Chi Zhang , Zihang Lin , Liheng Xu 2021
The key procedure of haze image translation through adversarial training lies in the disentanglement between the feature only involved in haze synthesis, i.e.style feature, and the feature representing the invariant semantic content, i.e. content feature. Previous methods separate content feature apart by utilizing it to classify haze image during the training process. However, in this paper we recognize the incompleteness of the content-style disentanglement in such technical routine. The flawed style feature entangled with content information inevitably leads the ill-rendering of the haze images. To address, we propose a self-supervised style regression via stochastic linear interpolation to reduce the content information in style feature. The ablative experiments demonstrate the disentangling completeness and its superiority in level-aware haze image synthesis. Moreover, the generated haze data are applied in the testing generalization of vehicle detectors. Further study between haze-level and detection performance shows that haze has obvious impact on the generalization of the vehicle detectors and such performance degrading level is linearly correlated to the haze-level, which, in turn, validates the effectiveness of the proposed method.
This paper proposes a joint training method to learn both the variational auto-encoder (VAE) and the latent energy-based model (EBM). The joint training of VAE and latent EBM are based on an objective function that consists of three Kullback-Leibler divergences between three joint distributions on the latent vector and the image, and the objective function is of an elegant symmetric and anti-symmetric form of divergence triangle that seamlessly integrates variational and adversarial learning. In this joint training scheme, the latent EBM serves as a critic of the generator model, while the generator model and the inference model in VAE serve as the approximate synthesis sampler and inference sampler of the latent EBM. Our experiments show that the joint training greatly improves the synthesis quality of the VAE. It also enables learning of an energy function that is capable of detecting out of sample examples for anomaly detection.
Content and style (C-S) disentanglement intends to decompose the underlying explanatory factors of objects into two independent subspaces. From the unsupervised disentanglement perspective, we rethink content and style and propose a formulation for unsupervised C-S disentanglement based on our assumption that different factors are of different importance and popularity for image reconstruction, which serves as a data bias. The corresponding model inductive bias is introduced by our proposed C-S disentanglement Module (C-S DisMo), which assigns different and independent roles to content and style when approximating the real data distributions. Specifically, each content embedding from the dataset, which encodes the most dominant factors for image reconstruction, is assumed to be sampled from a shared distribution across the dataset. The style embedding for a particular image, encoding the remaining factors, is used to customize the shared distribution through an affine transformation. The experiments on several popular datasets demonstrate that our method achieves the state-of-the-art unsupervised C-S disentanglement, which is comparable or even better than supervised methods. We verify the effectiveness of our method by downstream tasks: domain translation and single-view 3D reconstruction. Project page at https://github.com/xrenaa/CS-DisMo.
Unsupervised disentanglement learning is a crucial issue for understanding and exploiting deep generative models. Recently, SeFa tries to find latent disentangled directions by performing SVD on the first projection of a pre-trained GAN. However, it is only applied to the first layer and works in a post-processing way. Hessian Penalty minimizes the off-diagonal entries of the outputs Hessian matrix to facilitate disentanglement, and can be applied to multi-layers.However, it constrains each entry of output independently, making it not sufficient in disentangling the latent directions (e.g., shape, size, rotation, etc.) of spatially correlated variations. In this paper, we propose a simple Orthogonal Jacobian Regularization (OroJaR) to encourage deep generative model to learn disentangled representations. It simply encourages the variation of output caused by perturbations on different latent dimensions to be orthogonal, and the Jacobian with respect to the input is calculated to represent this variation. We show that our OroJaR also encourages the outputs Hessian matrix to be diagonal in an indirect manner. In contrast to the Hessian Penalty, our OroJaR constrains the output in a holistic way, making it very effective in disentangling latent dimensions corresponding to spatially correlated variations. Quantitative and qualitative experimental results show that our method is effective in disentangled and controllable image generation, and performs favorably against the state-of-the-art methods. Our code is available at https://github.com/csyxwei/OroJaR

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا