Do you want to publish a course? Click here

Joint Training of Variational Auto-Encoder and Latent Energy-Based Model

158   0   0.0 ( 0 )
 Added by Tian Han
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

This paper proposes a joint training method to learn both the variational auto-encoder (VAE) and the latent energy-based model (EBM). The joint training of VAE and latent EBM are based on an objective function that consists of three Kullback-Leibler divergences between three joint distributions on the latent vector and the image, and the objective function is of an elegant symmetric and anti-symmetric form of divergence triangle that seamlessly integrates variational and adversarial learning. In this joint training scheme, the latent EBM serves as a critic of the generator model, while the generator model and the inference model in VAE serve as the approximate synthesis sampler and inference sampler of the latent EBM. Our experiments show that the joint training greatly improves the synthesis quality of the VAE. It also enables learning of an energy function that is capable of detecting out of sample examples for anomaly detection.



rate research

Read More

Due to the intractable partition function, training energy-based models (EBMs) by maximum likelihood requires Markov chain Monte Carlo (MCMC) sampling to approximate the gradient of the Kullback-Leibler divergence between data and model distributions. However, it is non-trivial to sample from an EBM because of the difficulty of mixing between modes. In this paper, we propose to learn a variational auto-encoder (VAE) to initialize the finite-step MCMC, such as Langevin dynamics that is derived from the energy function, for efficient amortized sampling of the EBM. With these amortized MCMC samples, the EBM can be trained by maximum likelihood, which follows an analysis by synthesis scheme; while the variational auto-encoder learns from these MCMC samples via variational Bayes. We call this joint training algorithm the variational MCMC teaching, in which the VAE chases the EBM toward data distribution. We interpret the learning algorithm as a dynamic alternating projection in the context of information geometry. Our proposed models can generate samples comparable to GANs and EBMs. Additionally, we demonstrate that our models can learn effective probabilistic distribution toward supervised conditional learning experiments.
Terahertz (THz) sensing is a promising imaging technology for a wide variety of different applications. Extracting the interpretable and physically meaningful parameters for such applications, however, requires solving an inverse problem in which a model function determined by these parameters needs to be fitted to the measured data. Since the underlying optimization problem is nonconvex and very costly to solve, we propose learning the prediction of suitable parameters from the measured data directly. More precisely, we develop a model-based autoencoder in which the encoder network predicts suitable parameters and the decoder is fixed to a physically meaningful model function, such that we can train the encoding network in an unsupervised way. We illustrate numerically that the resulting network is more than 140 times faster than classical optimization techniques while making predictions with only slightly higher objective values. Using such predictions as starting points of local optimization techniques allows us to converge to better local minima about twice as fast as optimization without the network-based initialization.
Variational Auto-Encoders (VAEs) have become very popular techniques to perform inference and learning in latent variable models as they allow us to leverage the rich representational power of neural networks to obtain flexible approximations of the posterior of latent variables as well as tight evidence lower bounds (ELBOs). Combined with stochastic variational inference, this provides a methodology scaling to large datasets. However, for this methodology to be practically efficient, it is necessary to obtain low-variance unbiased estimators of the ELBO and its gradients with respect to the parameters of interest. While the use of Markov chain Monte Carlo (MCMC) techniques such as Hamiltonian Monte Carlo (HMC) has been previously suggested to achieve this [23, 26], the proposed methods require specifying reverse kernels which have a large impact on performance. Additionally, the resulting unbiased estimator of the ELBO for most MCMC kernels is typically not amenable to the reparameterization trick. We show here how to optimally select reverse kernels in this setting and, by building upon Hamiltonian Importance Sampling (HIS) [17], we obtain a scheme that provides low-variance unbiased estimators of the ELBO and its gradients using the reparameterization trick. This allows us to develop a Hamiltonian Variational Auto-Encoder (HVAE). This method can be reinterpreted as a target-informed normalizing flow [20] which, within our context, only requires a few evaluations of the gradient of the sampled likelihood and trivial Jacobian calculations at each iteration.
To act and plan in complex environments, we posit that agents should have a mental simulator of the world with three characteristics: (a) it should build an abstract state representing the condition of the world; (b) it should form a belief which represents uncertainty on the world; (c) it should go beyond simple step-by-step simulation, and exhibit temporal abstraction. Motivated by the absence of a model satisfying all these requirements, we propose TD-VAE, a generative sequence model that learns representations containing explicit beliefs about states several steps into the future, and that can be rolled out directly without single-step transitions. TD-VAE is trained on pairs of temporally separated time points, using an analogue of temporal difference learning used in reinforcement learning.
We study the problem of learning to map, in an unsupervised way, between domains A and B, such that the samples b in B contain all the information that exists in samples a in A and some additional information. For example, ignoring occlusions, B can be people with glasses, A people without, and the glasses, would be the added information. When mapping a sample a from the first domain to the other domain, the missing information is replicated from an independent reference sample b in B. Thus, in the above example, we can create, for every person without glasses a version with the glasses observed in any face image. Our solution employs a single two-pathway encoder and a single decoder for both domains. The common part of the two domains and the separate part are encoded as two vectors, and the separate part is fixed at zero for domain A. The loss terms are minimal and involve reconstruction losses for the two domains and a domain confusion term. Our analysis shows that under mild assumptions, this architecture, which is much simpler than the literature guided-translation methods, is enough to ensure disentanglement between the two domains. We present convincing results in a few visual domains, such as no-glasses to glasses, adding facial hair based on a reference image, etc.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا