No Arabic abstract
The James Webb Space Telescope (JWST) is expected to revolutionize the field of exoplanets. The broad wavelength coverage and the high sensitivity of its instruments will allow characterization of exoplanetary atmospheres with unprecedented precision. Following the Call for the Cycle 1 Early Release Science Program, the Transiting Exoplanet Community was awarded time to observe several targets, including WASP-43b. The atmosphere of this hot Jupiter has been intensively observed but still harbors some mysteries, especially concerning the day-night temperature gradient, the efficiency of the atmospheric circulation, and the presence of nightside clouds. We will constrain these properties by observing a full orbit of the planet and extracting its spectroscopic phase curve in the 5--12 $mu$m range with JWST/MIRI. To prepare for these observations, we performed an extensive modeling work with various codes: radiative transfer, chemical kinetics, cloud microphysics, global circulation models, JWST simulators, and spectral retrieval. Our JWST simulations show that we should achieve a precision of 210 ppm per 0.1 $mu$m spectral bin on average, which will allow us to measure the variations of the spectrum in longitude and measure the night-side emission spectrum for the first time. If the atmosphere of WASP-43b is clear, our observations will permit us to determine if its atmosphere has an equilibrium or disequilibrium chemical composition, providing eventually the first conclusive evidence of chemical quenching in a hot Jupiter atmosphere. If the atmosphere is cloudy, a careful retrieval analysis will allow us to identify the cloud composition.
Having a short orbital period and being tidally locked makes WASP-43b an ideal candidate for JWST observations. Phase curve observations of an entire orbit will enable the mapping of the atmospheric structure across the planet, with different wavelengths of observation allowing different atmospheric depths to be seen. We provide insight into the details of the clouds that may form on WASP-43b in order to prepare the forthcoming interpretation of the JWST and follow-up data. We utilize 3D GCM results as input for a kinetic, non-equilibrium model for mineral cloud particles, and for a kinetic model to study a photochemicaly-driven hydrocarbon haze component. Mineral condensation seeds form throughout the atmosphere of WASP-43b. This is in stark contrast to the ultra-hot Jupiters, like WASP-18b and HAT-P-7b. The dayside is loaded with few but large mineral cloud particles in addition to hydrocarbon haze particles of comparable abundance. Photochemically driven hydrocarbon haze appears on the dayside, but does not contribute to the cloud formation on the nightside. The geometrical cloud extension differs across the globe due to the changing thermodynamic conditions. Day and night differ by 6000km in pressure scale height. As reported for other planets, the C/O is not constant throughout the atmosphere. The mean molecular weight is approximately constant in a H2-dominated WASP-43b. WASP-43b is expected to be fully covered in clouds which are not homogeneously distributed throughout the atmosphere. The dayside and the terminator clouds will be a combination of mineral particles of locally varying size and composition, and of hydrocarbon hazes. The optical depth of hydrocarbon hazes is considerably lower than that of mineral cloud particles such that a wavelength-dependent radius measurement of WASP-43b would be determined by the mineral cloud particles but not by hazes.
We have conducted a re-analysis of publicly available Hubble Space Telescope Wide Field Camera 3 (HST WFC3) transmission data for the hot-Jupiter exoplanet WASP-43b, using the Bayesian retrieval package Tau-REx. We report evidence of AlO in transmission to a high level of statistical significance (> 5-sigma in comparison to a flat model, and 3.4-sigma in comparison to a model with H2O only). We find no evidence of the presence of CO, CO2, or CH4 based on the available HST WFC3 data or on Spitzer IRAC data. We demonstrate that AlO is the molecule that fits the data to the highest level of confidence out of all molecules for which high-temperature opacity data currently exists in the infrared region covered by the HST WFC3 instrument, and that the subsequent inclusion of Spitzer IRAC data points in our retrieval further supports the presence of AlO. H2O is the only other molecule we find to be statistically significant in this region. AlO is not expected from the equilibrium chemistry at the temperatures and pressures of the atmospheric layer that is being probed by the observed data. Its presence therefore implies direct evidence of some disequilibrium processes with links to atmospheric dynamics. Implications for future study using instruments such as the James Webb Space Telescope (JWST) are discussed, along with future opacity needs. Comparisons are made with previous studies into WASP-43b.
We report new detections of thermal emission from the transiting hot Jupiter WASP-43b in the H and Ks-bands as observed at secondary eclipses. The observations were made with the WIRCam instrument on the CFHT. We obtained a secondary eclipse depth of 0.103$_{-0.017}^{+0.017}%$ and 0.194$_{-0.029}^{+0.029}%$ in the H and Ks-bands, respectively. The Ks band depth is consistent with previous measurement in the narrow band centered at 2.09um by Gillon et al. (2012). Our eclipse depths in both bands are consistent with a blackbody spectrum with a temperature of ~1850 K, slightly higher than the dayside equilibrium temperature without day-night energy redistribution. Based on theoretical models of the dayside atmosphere of WASP-43b, our data constrain the day-night energy redistribution in the planet to be $lesssim 15-25$%, depending on the metal content in the atmosphere. Combined with energy balance arguments our data suggest that a strong temperature inversion is unlikely in the dayside atmosphere of WASP-43b. However, a weak inversion cannot be strictly ruled out at the current time. Future observations are required to place detailed constraints on the chemical composition of the atmosphere.
Ultra-hot Jupiters are the hottest exoplanets discovered so far. Observations begin to provide insight into the composition of their extended atmospheres and their chemical day/night asymmetries. Both are strongly affected by cloud formation. We explore trends in cloud properties for a sample of five giant gas planets: WASP-43b, WASP-18b, HAT-P-7b, WASP-103b, and WASP-121b. This provides a reference frame for cloud properties for the JWST targets WASP-43b and WASP-121b. We further explore chemically inert tracers to observe geometrical asymmetries, and if the location of inner boundary of a 3D GCM matters for the clouds that form. The large day/night temperature differences of ultra-hot Jupiters cause large chemical asymmetries: cloud-free days but cloudy nights, atomic vs. molecular gases and respectively different mean molecular weights, deep thermal ionospheres vs. low-ionised atmospheres, undepleted vs enhanced C/O. WASP-18b, as the heaviest planet in the sample, has the lowest global C/O. The global climate may be considered as similar amongst ultra-hot Jupiters, but different to that of hot gas giants. The local weather, however, is individual for each planet since the local thermodynamic conditions, and hence the local cloud and gas properties, differ. The morning and the evening terminator of ultra-hot Jupiters will carry signatures of their strong chemical asymmetry such that ingress/egress asymmetries can be expected. An increased C/O ratio is a clear sign of cloud formation, making cloud modelling a necessity when utilizing C/O (or other mineral ratios) as tracer for planet formation. The changing geometrical extension of the atmosphere from the day to the nightside may be probed through chemically inert species like helium. Ultra-hot Jupiters are likely to develop deep atmospheric ionospheres which may impact the atmosphere dynamics through MHD processes.
The large radii of many hot Jupiters can only be matched by models that have hot interior adiabats, and recent theoretical work has shown that the interior evolution of hot Jupiters has a significant impact on their atmospheric structure. Due to its inflated radius, low gravity, and ultra-hot equilibrium temperature, WASP-76b is an ideal case study for the impact of internal evolution on observable properties. Hot interiors should most strongly affect the non-irradiated side of the planet, and thus full phase curve observations are critical to ascertain the effect of the interior on the atmospheres of hot Jupiters. In this work, we present the first Spitzer phase curve observations of WASP-76b. We find that WASP-76b has an ultra-hot day side and relatively cold nightside with brightness temperatures of $2471 pm 27~mathrm{K}$/$1518 pm 61~mathrm{K}$ at $3.6~micron$ and $2699 pm 32~mathrm{K}$/$1259 pm 44~mathrm{K}$ at $4.5~micron$, respectively. These results provide evidence for a dayside thermal inversion. Both channels exhibit small phase offsets of $0.68 pm 0.48^{circ}$ at $3.6~micron$ and $0.67 pm 0.2^{circ}$ at $4.5~mumathrm{m}$. We compare our observations to a suite of general circulation models that consider two end-members of interior temperature along with a broad range of frictional drag strengths. Strong frictional drag is necessary to match the small phase offsets and cold nightside temperatures observed. From our suite of cloud-free GCMs, we find that only cases with a cold interior can reproduce the cold nightsides and large phase curve amplitude at $4.5~micron$, hinting that the hot interior adiabat of WASP-76b does not significantly impact its atmospheric dynamics or that clouds blanket its nightside.